Skip to main content

Origin of the L-Homochirality of Amino-Acids in the Proteins of Living Organisms

  • Chapter
Molecules in Physics, Chemistry, and Biology

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 4))

Abstract

Symmetry is equilibrium, appeasement, and, in the limit, death. By contrast, the breaking of the symmetry generates motion, animates forms, sprouts Life. Among the many examples which can be given to illustrate this law of Nature, the most typical is certainly that of natural substances. As early as the last century, the attention of chemists had been drawn to the fact that most of the substances from plants possess a rotatory power (oil of turpentine, solutions of sugar, of camphor, etc.). Around 1900, Fischer showed that the majority of the natural sugars belong to the same stereochemical series (D-series). His student, Freudenberg (1924) was one of the first to realize that the amino acids of proteins belong to L-series (Figure 1). Moreover, certain D-amino acids have subsequently been found in some organisms (bacteria, annelids, insects, octopus) as constituents of specific molecules (e.g. luciferine) but without being susceptible to incorporation in proteins [1]. More recently, at last, the discovery that, after death, amino acids of the collagen of bones progressively racemize [2, 3] has reinforced the certainty of the strong connection which exists between chiral dissymmetry and Life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Corrigan: Science 164, 142 (1969).

    Article  CAS  Google Scholar 

  2. R. Rogers Yocum, D. J. Waxman, and J. L. Stroninger: TIBS (April 1980) 97.

    Google Scholar 

  3. J. L. Bada and R. Protsch:Proc. Nat. Acad. Sci. 70,1331 (1973).

    Article  CAS  Google Scholar 

  4. W. G. Armstrong, L. B. Halstead, F. B. Reed, and L. Wood: Phil. Trans. Royal Soc. London 301, 301 (1983).

    Article  CAS  Google Scholar 

  5. S. Weinberg: Phys. Rev. Lett. 19, 1264 (1967)

    Article  Google Scholar 

  6. A. Salam: Proc. 8th Nobel Symp. —Elementary Particle Physics (ed. by N. Svartholm) Almquist and Wiksell, Stockholm, p. 367 (1968).

    Google Scholar 

  7. E. Fischer: Chem. Ber. 27, 3189 (1894).

    Article  CAS  Google Scholar 

  8. G. Wald: Ann. New York Acad. Sc. 69, 352 (1957)

    Article  CAS  Google Scholar 

  9. E. R. Blout and M. Idelson: J. Am. Chem. Soc. 78, 3857(1956).

    Article  Google Scholar 

  10. C. C. Costain and G. B. M. Sutherland: J. Phys. Chem. 56, 321 (1952)

    Article  CAS  Google Scholar 

  11. R. E. Weston: J. Am. Chem. Soc. 76, 2645 (1954).

    Article  CAS  Google Scholar 

  12. J. L. Bada and P. M. Helfman: World Archeology 7, 160 (1975)

    Article  CAS  Google Scholar 

  13. R. Lafont, G. Perinet, F. Bazile, and M. Icole: Compt. Rend. Acad. Sc. Paris, Série II, 299, 447 (1984)

    Google Scholar 

  14. A. Julg, L’anthropologie 91, 235 (1987).

    Google Scholar 

  15. J. L. Bada and S. E. Brown: TIBS (Sept. 1980) III.

    Google Scholar 

  16. L. Pasteur: in Oeuvres de Pasteur I. Dissymétrie moléculaire (ed. by Pasteur Valery-Radot) Masson, Paris, 1922.

    Google Scholar 

  17. L. Pasteur: Compt. Rend. Acad. Sc. Paris 78,1515(1878).

    Google Scholar 

  18. J. A. Le Bel: Bull. Soc. Chim. France 22, 337 (1874).

    Google Scholar 

  19. A. Cotton: J. Chim. Phys. 7, 81 (1909).

    CAS  Google Scholar 

  20. W. Kuhn and F. Braun: Naturwissenschaften 17, 227 (1929)

    Article  Google Scholar 

  21. W. Kuhn and E. Knopf: Z. Phys. Chem. B7, 292 (1930).

    Google Scholar 

  22. B. Nordén: Nature 266, 567 (1977).

    Article  Google Scholar 

  23. P. D. Richie: Asymmetric Synthesis and Asymmetric Induction, Oxford Univ. Press, 1933.

    Google Scholar 

  24. W. A. Bonner: in Exobiology (ed. by C. Ponnamperuma), North Holland, Amsterdam, 1972, p. 170.

    Google Scholar 

  25. P. Curie: J. Physique 3,409 (1894).

    Google Scholar 

  26. P. G. de Gennes: Compt. Rend. Acad. Sc. Paris B270, 891 (1970).

    Google Scholar 

  27. W. Rhodes and R. C. Dougherty: J. Am. Chem. Soc. 100, 6247 (1978)

    Article  CAS  Google Scholar 

  28. R. C. Dougherty, J. Am. Chem. Soc. 102, 380 (1980).

    Article  CAS  Google Scholar 

  29. C. A. Mead and A. Moscowitz:J. Am. Chem. Soc. 102, 7301 (1980).

    Article  CAS  Google Scholar 

  30. A. Peres: J. Am. Chem. Soc. 102,7389 (1980).

    Article  CAS  Google Scholar 

  31. P. Gerike: Naturwissenschaften 62, 38 (1975)

    Article  CAS  Google Scholar 

  32. D. Edwards, K. Cooper, and R. C. Dougherty: J. Am. Chem. Soc. 102, 381 (1980).

    Google Scholar 

  33. C. Honda and H. Hada: Tetrahedron Lett. 16, 177 (1976)

    Article  Google Scholar 

  34. B. Nordén: J. Phys. Chem. 82, 744 (1978).

    Article  Google Scholar 

  35. R. V. Jones: Proc. Roy. Soc. London A349, 423 (1976)

    Google Scholar 

  36. P. W. Atkins: Chem. Phys. Lett. 74, 358 (1980).

    Article  CAS  Google Scholar 

  37. S. F. Mason:Int. Rev. Phys. Chem. 3, 217 (1983).

    Article  CAS  Google Scholar 

  38. E. Fischer: Chem. Ber. 27, 2985 and 3231 (1894).

    Article  CAS  Google Scholar 

  39. F. R. Japp:Nature 58,452 (1898).

    Article  Google Scholar 

  40. K. Harada: Naturwissenschaften 57,114 (1970).

    Article  CAS  Google Scholar 

  41. H. Kamminga: Vistas in Astronomy 26,67 (1982).

    Article  Google Scholar 

  42. L. Pasteur: Rev. Scientifique 7, 2 (1884).

    Google Scholar 

  43. G. M. Schwab and L. Rudolf: Naturwissenschaften 21, 363 (1932).

    Article  Google Scholar 

  44. G. M. Schwab, F. Rost, and L. Rudolf: Kolloid Z. 68, 157 (1934).

    Article  CAS  Google Scholar 

  45. A. P. Terentjev, Je. I. Klabunowski, and W. W. Patrikejev: Dokl. Akad. Nauk. SSSR 74, 947 (1950).

    Google Scholar 

  46. Je. I. Klabunowski and W. W. Patrikejev: Dokl. Acad. Nauk. SSSR 78, 415 (1951)

    Google Scholar 

  47. G. Karogonnis and G. Goumoulos: Nature 142, 162 (1938)

    Article  Google Scholar 

  48. G. K. Schweitzer and C. K. Talbot: J. Tenn. Acad. Sc. 25, 143 (1950).

    CAS  Google Scholar 

  49. A. Nakahara and R. Tsuchida: J. Am. Chem. Soc. 76, 3103 (1954).

    Article  CAS  Google Scholar 

  50. A. Amariglio, H. Amariglio, and X. Duval:Helv. Chim. Acta 51,2110 (1968).

    Article  CAS  Google Scholar 

  51. D. P. Craig and D. P. Mellor: Topics Curr. Chem., Springer-Verlag, Berlin, Vol. 63, p. 1 (1976).

    Article  CAS  Google Scholar 

  52. W. A. Bonner, P. R. Kavasmaneck, F. S. Martin, and J. J. Flores: Science 186,143 (1974).

    Article  CAS  Google Scholar 

  53. A. Julg, A. Favier, and Y. Ozias: Surf. Sc. 165, L53 (1986).

    Article  CAS  Google Scholar 

  54. L. Vega, L. Breton, C. Girardet, and L. Galatry: J. Chem. Phys. 84, 5171 (1986).

    Article  CAS  Google Scholar 

  55. D. W. Gidley, A. Rich, J. Van House, and P. W. Zitzewitz: Nature 297, 639 (1982)

    Article  CAS  Google Scholar 

  56. R. A. Hegstrom: Nature 297, 643 (1982).

    Article  CAS  Google Scholar 

  57. C. C. Bouchiat and M. A. Bouchiat: J. Phys. 35, 899 (1974) and 36, 493 (1975)

    Article  CAS  Google Scholar 

  58. R. A. Hegstrom, D. W. Rein, and P. G. H. Sandards: J. Chem. Phys. 73, 2329 (1980).

    Article  CAS  Google Scholar 

  59. S. F. Mason and G. E. Tranter: Chem. Phys. Lett. 94, 34 (1983)

    Article  CAS  Google Scholar 

  60. Mol. Phys. 53,1091 (1984).

    Google Scholar 

  61. G. E. Tranter:Mol Phys. 56, 825 (1985).

    Article  CAS  Google Scholar 

  62. S. F. Mason and G. E. Tranter: J. Chem. Soc., Chem. Comm., 117 (1983).

    Google Scholar 

  63. G. E. Tranter: J. Chem. Soc., Chem. Comm., 60 (1986).

    Google Scholar 

  64. F. C. Frank: Biochem. Biophys. Acta 11, 459 (1953)

    Article  CAS  Google Scholar 

  65. B. Nordén: J. Mol Evol. 11, 313 (1978).

    Article  Google Scholar 

  66. C. Fajszi and J. Czégé: Origins of Life 11, 143 (1981).

    Article  CAS  Google Scholar 

  67. D. K. Kondepudi and G. W. Nelson: Phys. Rev. Lett. 50,1023 (1983); 314, 438 (1985).

    Article  CAS  Google Scholar 

  68. D. K. Kondepudi and G. W. Nelson: Physica 125A, 465 (1984).

    CAS  Google Scholar 

  69. J. D. Bernal:The Physical Basis of Life, Routledge and Kogan Paul, London (1951).

    Google Scholar 

  70. A. I. Oparin:The Origin of Life on Earth, Academic Press, New York (1957).

    Google Scholar 

  71. M. Calvin: Chemical Evolution, Clarendon Press, Oxford (1969).

    Google Scholar 

  72. B. K. G. Theng: The Chemistry of Clay-Organic Reactions, Adam Hilger, London, p. 274–275 (1974).

    Google Scholar 

  73. A. G. Cairns-Smith: Genetic Takeover and the Mineral Origin of Life, Cambridge University Press (1982).

    Google Scholar 

  74. J. Labeyrie: L ’homme et le climat, Denoël, Paris (1985).

    Google Scholar 

  75. T. E. Pavlovskaya, A. G. Pasinskyi, and A. I. Grebenikova: Dokl Akad. Nauk SSSR 135, 743 (1960).

    CAS  Google Scholar 

  76. D. Yoshino, R. Hayatsu, and E. Anders:Geochim. Cosmochim. Acta 35, 927 (1971).

    Article  CAS  Google Scholar 

  77. J. J. Fripiat, P. Cloos, B. Calicis, and K. Makay: Proc. Int. Clay Conf Jerusalem 1, 233 (1966)

    Google Scholar 

  78. E. T. Degens and J. Mathéja in Prebiotic and Biochemical Evolution (ed. by A. P. Kimball and J. Oró) North Holland, Amsterdam, p. 39 (1970).

    Google Scholar 

  79. M. Paecht-Horowitz, J. Berger, and A. Katchalsky:Nature 228,636 (1970).

    Article  CAS  Google Scholar 

  80. G. R. Harvey, K. Mopper, and E. T. Degens: Chem. Geol. 9,79 (1972).

    Article  CAS  Google Scholar 

  81. G. W. Brindley and K. Robinson: Min. Mag. 27, 242 (1946).

    Article  Google Scholar 

  82. Crystal Structures of Clay Minerals and their X-ray Identification, ed. by G. W. Brindley and G. Brown, Mineral Soc. London (1980).

    Google Scholar 

  83. C. Palache, H. Berman, and C. Frondel: in Dana’s System of Mineralogy, J. Wiley, New York, 7th edn. vol. III, p. 16(1962).

    Google Scholar 

  84. T. A. Jackson: Chem. Geol. 7, 295 (1971).

    Article  CAS  Google Scholar 

  85. A. Julg: Compt. Rend. Acad. Sc. Paris II 303, 1773 (1986).

    Google Scholar 

  86. A. Julg and D. Létoquart: Phil Mag. 33, 721 (1976).

    Article  CAS  Google Scholar 

  87. A. Julg: Crystals as Giant Molecules, Lecture Notes in Chemistry, vol. 9, Springer-Verlag, Berlin (1978).

    Google Scholar 

  88. A. Julg, A. Pellegatti, and F. Marinelli: Nouv. J. Chim. 6, 31 (1982).

    CAS  Google Scholar 

  89. M. Frenkel and L. Heler-Kallat: Chem. Geol. 19,161 (1977).

    Article  CAS  Google Scholar 

  90. G. E. Tranter: Nature 318,172(1985).

    Article  CAS  Google Scholar 

  91. D. Gautier: The Atmospheres of Saturn and Titan, Proc. Int. Workshop, Alpbach, Austria, ESA SP-241, p. 75 (1988).

    Google Scholar 

  92. J. Oró: Space Life Sciences 3, 507 (1972).

    Article  Google Scholar 

  93. J. Oró, S. Nakaparksin, H. Lichtenstein, and E. Gil-Av: Nature 230, 107 (1971).

    Article  Google Scholar 

  94. L. D. Barron: Chem. Phys. Lett. 79, 392 (1981).

    Article  CAS  Google Scholar 

  95. Molec. Phys. 43,1395 (1981).

    Google Scholar 

  96. H. Alfvén: Rev. Mod. Phys. 37, 652 (1965).

    Article  Google Scholar 

  97. H. H. Fliche, J. M. Souriau, and R. Triay: A. Astrophys. 108, 256 (1982).

    CAS  Google Scholar 

  98. J. M. Souriau: Compt. Rend. Acad. Sc., Série générale, II, 213 (1985).

    Google Scholar 

  99. F. X. Désert and E. Schatzman: A. Astrophys. 158,135 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht, The Netherlands.

About this chapter

Cite this chapter

Julg, A. (1989). Origin of the L-Homochirality of Amino-Acids in the Proteins of Living Organisms. In: Maruani, J. (eds) Molecules in Physics, Chemistry, and Biology. Topics in Molecular Organization and Engineering, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1173-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1173-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2599-8

  • Online ISBN: 978-94-009-1173-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics