Skip to main content

Electrically induced vortex flow at a point electrode and azimuthal rotation

  • Chapter
Electrically Induced Vortical Flows

Part of the book series: Mechanics of Fluids and Transport Processes ((MFTP,volume 9))

Abstract

The previous chapter dealt with the flows arising when an electric current radially diverges through the fluid from a small electrode. In spite of the simplicity of the physical model with a point current source, which was successfully combined with the similarity solution of equations of motion and magnetic field, it was found to be impossible to describe the flows for magnitudes of electric current higher than a certain critical magnitude. The source of failure may be sought in the similarity of the equations, which greatly restrict the form of the motions. However it should be recalled that the similarity is not an artificial assumption to describe the flows at a point electrode, it is derived by the dimensional analysis of the given physical quantities entering the problem [26]. Moreover, as was demonstrated in Section 2.10, the description of analogous flows without the assumption of similarity, e.g. in a closed hemispherical container, also led to serious difficulties. Consequently, the cause of difficulties should be sought in the physical statement of the problem, which probably does not take into account an essential mechanism limiting the growth of velocities in the flow when the critical magnitude of electric current is reached. The limiting mechanism cannot be related to the flow induced electric current since, even for excessive magnitudes of electrical condictivity (by 6–7 orders of magnitude compared to real materials) the critical magnitude of the electric current is not appreciably increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atthey D. R.: A mathematical model for fluid flow in a weld pool at high currents. J. Fluid Mech. (1980), 98, pp. 787–801.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Batchelor G. K.: An Introduction to Fluid Dynamics. Cambridge at the University Press, 1970.

    Google Scholar 

  3. Bershadskij A. G.: Stability of axisymmetric meridional flows to azimuthal rotations. Magnitnaya Gidrodinamika (1985), No. 1, pp. 49–54.

    Google Scholar 

  4. Bojarevičs V. V.: MHD flows at an electric current point source. Part I. Magnitnaya Gidrodinamika (1981), No. 1, pp. 21–28.

    Google Scholar 

  5. Bojarevičs V. V.: MHD flows at an electric current point source. Part II. Magnitnaya Gidrodinamika (1981), No. 2, pp. 41–44.

    Google Scholar 

  6. Bojarevičs V. V. and Millere R.: Amplification of rotation of meridional electrovortex flow in a hemisphere. Magnitnaya Gidrodinamika (1982), No. 4, pp. 51–56.

    Google Scholar 

  7. Bojarevičs V. V., Sharamkin V. I., and Shcherbinin E. V.: Effect of longitudinal magnetic field on the medium motion in electrical arc welding. Magnitnaya Gidrodinamika (1977), No. 1, pp. 115–120.

    Google Scholar 

  8. Bojarevics V. and Shcherbinin E. V.: Azimuthal rotation in the axisymmetric meridional flow due to an electric current source. J. Fluid Mech. (1983), 126, pp. 413–430.

    Article  ADS  MATH  Google Scholar 

  9. Burgers J. M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. (1948), 1, pp. 197–198.

    Google Scholar 

  10. Chow Ch. Y. and Uberoi M. S.: Stability of an electrical discharge surrounded by a free vortex. Phys. Fluids (1972), 15(12), pp. 2187–2192.

    Article  ADS  Google Scholar 

  11. Craine R. E. and Weatherill N. P.: Fluid flow in a hemispherical container induced by a distributed source of current and superimposed uniform magnetic field. J. Fluid Mech. (1980), 99, pp. 1–12.

    Article  ADS  MATH  Google Scholar 

  12. Dudko D. A. and Rublevskij I. N.: Electromagnetic mixing of slag and metal bath in electroslag process. Avtomaticheskaya Svarka (1960), No. 9, pp. 12–16.

    Google Scholar 

  13. Gagen Yu. G. and Taran V. D.: Welding by the Magnetically Controlled Arc. Moscow: Mashinostroenie, 1970 (In Russian).

    Google Scholar 

  14. Howells P. and Smith R. K.: Numerical simulations of tornado-like vortices. Geophys. Astrophys. Fluid Dynamics (1983), 27, pp. 253–284.

    Article  ADS  Google Scholar 

  15. Kawakubo T., Tsutchiya Y., Sugaya M., and Matsumura K.: Formation of a vortex around a sink. Phys. Letters (1978), A68(l), pp. 65–66.

    ADS  Google Scholar 

  16. Kawakubo T., Shingubara S., and Tsutchiya Y.: Coherent structure formation of vortex flow around a sink. J. Phys. Soc. Jpn. (1983), 52 (Suppl.), pp. 143–146.

    Article  Google Scholar 

  17. Lavrent’ev M. A. and Shabat B. V.: Problems in Hydrodynamics and Mathematical Models. Moscow: Nauka, 1977 (In Russian).

    Google Scholar 

  18. Levakov V. S. and Lyubavskij K. V.: Effect of longitudinal magnetic field on electric arc with nonmelting tungsten cathode. Svarochnoe Proizvodstvo (1965), No. 10, pp. 9–12.

    Google Scholar 

  19. Millere R. P., Sharamkin V. I., and Shcherbinin E. V.: Effect of longitudinal magnetic field on electrovortex flow in the cylindrical volume. Magnitnaya Gidrodinamika (1980), No. 1, pp. 81–85.

    Google Scholar 

  20. Moffatt H. K.: Some problems in the magnetohydrodynamics of liquid metals. Ztschr. Angew. Math. Mech. (1978), 58, T65–T71.

    Google Scholar 

  21. Morton B. R.: The strength of vortex and swirling core flows. J. Fluid Mech. (1969), 38, pp. 315–333.

    Article  ADS  Google Scholar 

  22. Okorokov N. V.: Electromagnetic Mixing of Metal. Moscow: Metallurgizdat, 1961 (In Russian).

    Google Scholar 

  23. Orszag S.: Numerical simulation of incompressible flows within simple boundaries. 1. Galerkin (spectral) representations. Studies Appl. Math. (1971), 50, pp. 293–327.

    MathSciNet  MATH  Google Scholar 

  24. Rotunno R.: Vorticity dynamics of a convective swirling boundary layer. J. Fluid Mech. (1980), 97(3), pp. 623–640.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Ryan R. T. and Vonnegut B.: Miniature whirlwinds produced in the laboratory by high-voltage electrical discharges. Science (1970), 168, pp. 1349–1351.

    Article  ADS  Google Scholar 

  26. Shcherbinin E. V.: Viscous Fluid Jet Flows in Magnetic Field. Riga: Zinatne, 1973 (In Russian).

    Google Scholar 

  27. Shercliff J. A.: Fluid motion due to an electric current source. J. Fluid Mech. (1970), 40(2), pp. 241–250.

    Article  ADS  MATH  Google Scholar 

  28. Shercliff J. A.: The dynamics of conducting fluids under rotational magnetic forces. Sci. Progress (1979), 66, pp. 151–170.

    Google Scholar 

  29. Shivamoggi B. K.: Method of matched asymptotic expansions — asymptotic matching principle for high approximations. Ztschr. Angew. Math. Mech. (1978), 58(8), S. 354–356.

    Article  MathSciNet  MATH  Google Scholar 

  30. Smyslov Yu. N. and Shcherbinin E. V.: Nonlinear magnetohydrodynamic model of tornado. Problems of Mathematical Physics. Ed. by Tuchkevich V. M. Leningrad: Nauka, 1976, pp. 271–282 (In Russian).

    Google Scholar 

  31. Sozou C. and English H.: Fluid motion induced by an electric current discharge. Proc. Roy. Soc. London (1972), A329, pp. 71–81.

    ADS  Google Scholar 

  32. Sozou C. and Pickering W. M.: Magnetohydrodynamic flow due to the discharge of an electric current in a hemispherical container. J. Fluid Mech. (1976), 73(4), pp. 641–650.

    Article  ADS  MATH  Google Scholar 

  33. Torrance K.: Natural convection in the thermally stratified enclosures with localized heating from below. J. Fluid Mech. (1979), 95, pp. 474–495.

    Article  ADS  Google Scholar 

  34. Van Dyke M. D.: Perturbation Methods in Fluid Mechanics. New York: Academic Press, 1964.

    MATH  Google Scholar 

  35. Weir A. D.: Axisymmetric convection in a rotating sphere. 1. J. Fluid Mech. (1976), 75(1), pp. 49–79.

    Article  ADS  MATH  Google Scholar 

  36. Wilson T. and Rotunno R.: Numerical simulation of a laminar endwall vortex and boundary layer. Phys. Fluids (1986), 29(12), pp. 3993–4005.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bojarevičs, V., Freibergs, J.A., Shilova, E.I., Shcherbinin, E.V. (1989). Electrically induced vortex flow at a point electrode and azimuthal rotation. In: Electrically Induced Vortical Flows. Mechanics of Fluids and Transport Processes, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1163-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1163-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7017-1

  • Online ISBN: 978-94-009-1163-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics