Skip to main content

Nonquadratic Model Methods in Unconstrained Optimization

  • Chapter
Algorithms for Continuous Optimization

Part of the book series: NATO ASI Series ((ASIC,volume 434))

Abstract

Standard methods for unconstrained optimization base each iteration on a quadratic model of the objective function. Recently, methods using two generalizations of the standard models have been proposed. Nonlinear scaling invariance methods use a model that is a nonlinear regular scaling of a quadratic function, and conic methods use a model that is the ratio of a quadratic function divided by the square of a linear function. This paper will attempt to survey some interesting developments in these fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ariyawansa, K.A. (1990) ‘Deriving collinear scaling algorithms as estension of quasi-Newton methods and the local convergence of DFP and BFGS-related collinear scaling algorithms,’ Math. Prog. 49, 23–48.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ariyawansa, K.A. and Lau, D.T.M. (1992) ‘Local and Q-superlinear convergence of a class of collinear scaling algorithms that extends quasi-Newton methods with Broyden’s bounded-Φ class of updates,’ Optimization 23, 323–339.

    Article  MathSciNet  MATH  Google Scholar 

  3. Biggs, M.C. (1971) ‘Minimization algorithms making use of non-quadratic properties of the objective function’, J. Inst. Maths. Applics. 8, 315–327.

    Article  MATH  Google Scholar 

  4. Boland, W.R., Kamgnia, E.R. and Kowalik, J.S. (1979) ‘A conjugate-gradient optimization method invariant to nonlinear scaling,’ J. Optim. Theory Appl. 27, 221–230.

    Article  MathSciNet  MATH  Google Scholar 

  5. Broyden, C.G. (1967) ‘Quasi-Newton methods and their application to function minimization’ Maths. Comput., 21, 368–381.

    Article  MathSciNet  MATH  Google Scholar 

  6. Charalambous, C. (1973) ‘Unconstrained optimization based on homogeneous models’, Math. Prog. 5, 189–198

    Article  MathSciNet  MATH  Google Scholar 

  7. Davidon, W.C. (1980) ‘Conic approximations and collinear scalings for optimizers,’ SIAM J. Numer. Anal. 17, 268–281.

    Article  MathSciNet  MATH  Google Scholar 

  8. Davidon, W.C. (1982) ‘Conjugate directions for conic functions’, in M.J.D. Powell (ed.), Nonlinear Optimization 1981, Academic Press, New York, 23–28.

    Google Scholar 

  9. Davison, E.J. and Wong, P. (1975) ‘A robust conjugate-gradient algorithm which minimizes L-Functions’, Automatica 11, 297–308.

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, N.Y. and Chen, Z. (1987) ‘On the algorithms invariant to nonlinear scaling with inexact line searches,’ Chinese Annals of Mathematics 8b, 65–69.

    MathSciNet  Google Scholar 

  11. Deng, N.Y. and Li, Z.F. (1993a) ‘On the global convergence of conic-variable metric methods for unconstrained minimization,’ to appear.

    Google Scholar 

  12. Deng, N.Y. and Li, Z.F. (1993b) ‘Some global convergence of conic-variable metric methods with inexact line search,’ to appear.

    Google Scholar 

  13. Deng, N.Y. and Li, Z.F. (1993c) ‘On the convergence of the extended conjugate gradient method with invariance to nonlinear scaling,’ to appear.

    Google Scholar 

  14. Flachs, J. (1982) ‘ On the convergence, invariance and related aspects of a modification of Huang’s algorithm’, J. Optim. Theory Appl.37, 315–341.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gourgeon, H. and Nocedal, J. (1985) ‘A conic algorithm for optimization,’ SIAM J. Sci. Stat. Comput. 6, 253–267.

    Article  MathSciNet  MATH  Google Scholar 

  16. Jacobson, D.H. and Oksman, W. (1972) ‘An algorithm that minimizes homogeneous functions of N variables in N + 2 iterations and rapidly minimizes general functions’, J. Math. Anal, and Appl. 38, 535–552.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kowalik, J. S. and Ramakrishnan, K. G. (1976) ‘ A numerically stable optimization method based on a homogeneous function’, Math. Prog. 11, 50–66.

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, D.C. and Nocedal, J. (1989) ‘Algorithms with conic termination for nonlinear optimization,’ SIAM J. Sci. Stat. Comput. 10, 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  19. Luksan, L. (1986a) ‘Conjugate gradient algorithms for conic functions,’ Aplikace Matematiky 31, 427–440.

    MathSciNet  MATH  Google Scholar 

  20. Luksan, L. (1986b) ‘Conjugate direction algorithms for extended conic functions,’ Kybernetika 22, 31–46.

    MathSciNet  MATH  Google Scholar 

  21. Oren S.S., (1972) ‘Self-scaling variable metric algorithm for unconstrained minimization’, Ph. D. Dissertation, Stanford University.

    Google Scholar 

  22. Oren, S.S. and Spedicato, E. (1976) ‘Optimal conditioning of self-scaling variable metric algorithms’, Math. Prog., 10, 70–90.

    Article  MathSciNet  MATH  Google Scholar 

  23. Schnabel, R.B. (1983) ‘Conic methods for unconstrained minimization and tensor methods for nonlinear equations,’ in A. Bachem, M. Grotschel and B. Korte (eds.), Math. Prog., The State of the Art, Berlin, Springer-Verlag, 417–438.

    Google Scholar 

  24. Schnabel, R.B. (1989) ‘Sequential and parallel methods for unconstrained optimization,’ in M. Iri and K. Tanabe (eds.), Mathematical Programming, KTK Scientific Publishers, Tokyo, 227–261.

    Google Scholar 

  25. Schnabel, R.B. and Chao, T. (1991) ‘Tensor methods for unconstrained optimization using second derivatives’, SIAM J. Optimization 1, 293–315.

    Article  MATH  Google Scholar 

  26. Shirey, J.E. (1982) ‘Minimization of extended quadratic functions,’ Numer. Math. 39, 157–161.

    Article  MathSciNet  MATH  Google Scholar 

  27. Sloboda, F. (1980) ‘A generalized conjugate gradient algorithm for minimization,’ Numer. Math. 35, 223–230.

    Article  MathSciNet  MATH  Google Scholar 

  28. Sorensen, D.C. (1980) ‘The Q-superlinear convergence of a collinear scaling algorithm for unconstrained optimization,’ SIAM J. Numer. Anal. 17, 84–114.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sorensen, D.C. (1982) ‘Collinear scaling and sequential estimation in sparse optimization algorithms,’ Math. Prog. Study 18, 135–159.

    MathSciNet  MATH  Google Scholar 

  30. Spedicato, E. (1976) ‘A variable metric method for function minimization derived from invariancy to nonlinear scaling’, J. Optim. Theory Appl. 20, 315–329.

    Article  MathSciNet  MATH  Google Scholar 

  31. Spedicato, E., (1978) ‘A note on the determination of the scaling parameters in a class of quasi-Newton methods for unconstrained minimization’, J. Inst. Maths. Applics., 21, 285–291.

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, H.F. and Sheng, S.B. (1991) ‘Broyden family of collinear scaling algorithm for unconstrained optimization’, Numer. Math., A Journal of Chinese Universities, 13, 318–330.

    MathSciNet  MATH  Google Scholar 

  33. Zhu, M.F. and Xue, Y. (1992) ‘An algorithm for unconstrained optimization with non-quadratic model’, in Y. Wang et al. (eds.) OR and Decision Making, Chengdu University of Science and Technology Press, 409–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Kluwer Academic Publishers

About this chapter

Cite this chapter

Deng, N.Y., Li, Z.F. (1994). Nonquadratic Model Methods in Unconstrained Optimization. In: Spedicato, E. (eds) Algorithms for Continuous Optimization. NATO ASI Series, vol 434. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0369-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0369-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6652-5

  • Online ISBN: 978-94-009-0369-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics