Skip to main content

Clinical Approaches to Cancer Gene Therapy

  • Chapter
Principles of Cancer Biotherapy

Abstract

Despite significant advances in standard therapy, many types of cancer currently have no effective treatment. The search for therapies that will be effective against tumors that are unresponsive to surgical removal, chemotherapy, and radiation therapy has led to a number of innovative approaches, including gene therapy, a form of cancer biotherapy. Many gene therapies have been designed to eliminate tumors through tumor-specific properties that are different from those targeted by conventional therapy. Thus, tumors that are resistant to conventional agents could be treatable through a separate mechanism. In addition, some types of gene therapies have been shown to enhance the effects of chemotherapy and other biotherapies such that they might serve as adjunct treatment in diseases for which no one therapy is curative. Clinical trials employing gene transfer for the treatment of cancer have been underway since 1989, when the first phase 1 trial was initiated [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander RB, Rosenberg SA. Adoptively transferred tumor infiltrating lymphocytes can cure established metastatic tumor in mice and persist long-term in vivo as functional memory T lymphocytes. J of Immunother 1991;10:387–397.

    Google Scholar 

  2. Anderson WF. Prospects for human gene therapy. Science 1992;26:401–409.

    Google Scholar 

  3. Antoniades HN, Galanopoulos T, Neville-Golden J, Maxwell M. Expression of insulin like growth factors I and II and their receptor mRNAs in primary human astrocytomas and meningiomas; in vivo studies using in situ hybridization and immunocytochemistry. Int J Cancer 1992; 50(2) 215–22.

    PubMed  CAS  Google Scholar 

  4. Aoyagi T, Izumo S. Mapping of the pressure response element of the c-fos gene by direct DNA injection into beating hearts. J Biol Chem 1993; 268(36) 27176–9.

    PubMed  CAS  Google Scholar 

  5. Baker SJ, Markowitz S, Fearon ER, et al. Suppression of human colorectal carcinoma cell growth by wild type p53. Science 1990; 249:912–15.

    CAS  Google Scholar 

  6. Bank A. A phase I study of gene therapy for breast cancer. Human GeneTherapy 1994; 5(1) 102–6.

    Google Scholar 

  7. Bi WL, Parysek LM, Warnick R, Stambrook PJ. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Human Gene Ther 1993; 4: 725–31.

    CAS  Google Scholar 

  8. Blaese RM, Culver KW. Gene therapy for primary immunodeficiency disease. Immunodefic Rev 1992; 3(4) 329–49.

    PubMed  CAS  Google Scholar 

  9. Blankenstein T, Qin Z, Uberla K, et al. Tumor suppression after tumor cell targeted tumor necrosis factor alpha gene transfer. J. Exp. Med. 1991; 173: 1047–1052.

    Google Scholar 

  10. Bodine DM, Seidel NE, Gale MS, et al. Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cells mobilized into the peripheral blood by treatment with granulocyte colony stimulating factor and stem cell factor. Blood 1994; 84: 1482–91.

    PubMed  CAS  Google Scholar 

  11. Bonnekoh B, Greenhalgh DA, Bundham DS, et al. Inhibition of melanoma growth by adenoviral-mediated HSV thymidine kinase gene transfer in vivo. J Inv Derm 1995; 104(3) 313–7.

    CAS  Google Scholar 

  12. Boviatsis EJ, Park JS, Sena-Esteves M, et al. Long term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res 1994; 54(22) 5754–51.

    Google Scholar 

  13. Brenner MK, Rill DR, Moen RC, et al. Gene marking to trace origin of relapse after autologous bone marrow transplantation. Lancet 1993; 341: 85–6.

    PubMed  CAS  Google Scholar 

  14. Brenner MK, Rill DR, Holladay MS, et al. Gene marking to determine whether autologous marrow infusion restores long term haemopoiesis in cancer patients. Lancet 1993;342:1134–7.

    PubMed  CAS  Google Scholar 

  15. Caruso M, Panis Y, Gagandeep S, et al. Regression of established macroscopic liver metastasesss after in situ transduction of a suicide gene. Proc Natl Acad Sci 1993; 90 (15) 7024–7028.

    PubMed  CAS  Google Scholar 

  16. Cascinelli N, Foa R, Parmiani G. Active immunization of metastatic melanoma patients with IL-4 transduced allogeneic melanoma cells. A phase I-II study. Human Gene Therapy 1994; 5(8) 1059–64.

    CAS  Google Scholar 

  17. Casey G, Lo-Hsueh M, Lopez ME, et al. Growth suppression of human breast cancer cells by the introduction of a wild type p53 gene. Oncogene 1991; 6: 1791–7.

    PubMed  CAS  Google Scholar 

  18. Chang AE. Adoptive immunotherapy of melanoma with activated lymph node cells primed in vivo with autologous tumor cells transduced with the IL-4 gene. RAC meeting materials pp. 1280-1298. Protocol 9312-065 Office of Recom. DNA Activities, NIH, Bethesda, MD, 1993.

    Google Scholar 

  19. Chen P, Chen Y, Bookstein R, Lee W. Genetic mechanisms of tumor suppression by the human p53 gene. Science 1990; 250: 1576–80.

    PubMed  CAS  Google Scholar 

  20. Chen L, Linsley PS, Hellstrom KE. Costimulation of T cells for tumor immunity. Imm Today 1993; 14:483–486.

    CAS  Google Scholar 

  21. Chen Y, Chen P-L, Arnaiz N, et al. Expression of wildtype p53 in human A673 cells suppresses tumorigenicity but not growth rate. Oncogene 1991; 6: 1799–1805.

    PubMed  CAS  Google Scholar 

  22. Chen Y-T, Stockert E, Chen Y, et al. Identification of the MAGE-1 gene product by monoclonal and polyclonal antibodies. Proc Natl Acad Sci 1994; 91: 1004–8.

    PubMed  CAS  Google Scholar 

  23. Cohen PA, Kim H, Fowler DH, et al. Use of interlukin 7, IL-2, and gamma interferon to propagate CD4+ T cells in culture with maintained antigen specificity. J Immunother 1993; 14(3): 242–52.

    CAS  Google Scholar 

  24. Conry RM, LoBuglio AF, Kantor J, et al. Immune response to a carcinoembryonic polynucleotide vaccine. Cancer Res 1994; 54(5) 1164–8.

    PubMed  CAS  Google Scholar 

  25. Cornetta K, Tricot G, Broun ER, et al. Retroviral mediated gene transfer of bone marrow cells during autologous bone marrow transplantation for acute leukemia. Human GeneTherapy 1992; 3(3) 305–18.

    PubMed  CAS  Google Scholar 

  26. Culver KW, Blaese RM, Oldfield EH. In vivo transfer of the human interleukin-2 gene: negative tumoricidal results in experimental brain tumors. J Neurosurg 1994; 80(3) 535–40.

    PubMed  Google Scholar 

  27. Culver KW, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550–1552.

    PubMed  CAS  Google Scholar 

  28. Culver KW, Blaese RM, DeVroom HL, Anderson WF. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Human Gene Therapy 1993; 4(1) 39–69.

    PubMed  Google Scholar 

  29. Curiel DT, Agarwal S, Romer MU, et al. Gene transfer to respiratory epithelial cells via the receptor mediated endocytosis pathway. Am J Respir Cell Mol Biol 1992; 6(3) 247–52.

    PubMed  CAS  Google Scholar 

  30. Deisseroth AB. Use of safety-modified retroviruses to introduce chemotherapy resistance sequences into normal hematopoietic cells for chemoprotection during the therapy of ovarian cancer: a pilot trial. Human Gene Therapy 1994; 5(12) 1507–22.

    PubMed  CAS  Google Scholar 

  31. Deisseroth AB, Zu Z, Claxton D, et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 1994; 83(10) 3068–76.

    PubMed  CAS  Google Scholar 

  32. Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol 1994; 3(1) 9–14.

    PubMed  CAS  Google Scholar 

  33. Donahue RE, Kessler SW, Bodine D, et al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 1992; 176: 1125–1135.

    PubMed  CAS  Google Scholar 

  34. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte- macrophage colony stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Nat Acad Sci 1993; 90(8) 3539–43.

    PubMed  CAS  Google Scholar 

  35. Drazan KE, Shen XD, Csete ME, et al. In vivo adenoviral mediated human p53 tumor suppressor gene transfer and expression in rat liver after resection. Surgery 1994: 116(2): 197–203.

    PubMed  CAS  Google Scholar 

  36. Eck SJ, Wilson JM, Albelda SM. Successful adenovirus mediated gene transfer in an in vivo model of human malignant mesothelioma. Annals Thor Surg 1994; 57(6) 1395–1401.

    Google Scholar 

  37. Eckhardt SG, Dai A, Davidson KK. Induction of differentiation in HL60 cells by the reduction of extrachromosomally amplified c-myc. Proc Natl Acad Sci 1994; 91(14) 6674–8.

    PubMed  CAS  Google Scholar 

  38. Elion GB. The chemotherapeutic exploitation of virusspecified enzymes. Adv Enzyme Regul 1980; 18: 53–60.

    PubMed  CAS  Google Scholar 

  39. Elion GB, Furman PA, Fyfe JA, et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxy-methyl)- guanine. Proc Natl Acad Sci 1977; 74: 5716–5720.

    PubMed  CAS  Google Scholar 

  40. Ezzedine ZD, Martuza RL, Platika D, et al. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol 1991; 3(6) 608–14.

    CAS  Google Scholar 

  41. Fearon ER and Vogelstein B. A genetic model for colorectal carcinogenesis. Cell 1990; 61: 759–767.

    PubMed  CAS  Google Scholar 

  42. Fearon ER, Pardoll DM, Itaya T, et al. Interleukin 2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990; 60: 397–403.

    PubMed  CAS  Google Scholar 

  43. Ferkol T, Lindberg GL, Chen J, et al. Regulation of the phosphoenolpuruvate carboxykinase/human factor IX gene introduced into the livers of adult rats by receptor mediated gene transfer. FASEB J 1993; 7(11) 1081–91.

    PubMed  CAS  Google Scholar 

  44. Fisher B, Packard BS, Read EJ, et al. Tumor localization of adoptively transferred Indium-Ill labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 1989; 7: 250–261.

    PubMed  CAS  Google Scholar 

  45. Freeman SM, Abboud CN, Whartenby KA, et al. The bystander effect: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    PubMed  CAS  Google Scholar 

  46. Freeman SM, McCune C, Angel C, et al. Treatment of ovarian cancer using HSV-TK gene-modified vaccine. Human Gene Ther 1992; 3: 342–9159.

    Google Scholar 

  47. Freeman SM, Ramesh R, Shastri M, et al. The role of cytokines in mediating the bystander effect using HSVTK xenogeneic cells. Cancer Letters (in press).

    Google Scholar 

  48. Freeman SM, Ramesh R, Marrogi AJ, In vivo studies on the mechanism of the bystander effect. Cancer Gene Ther 1994; 1:326.

    Google Scholar 

  49. Freeman SM, Whartenby KA, Abboud CN, The use of in situ HSV-TK for cancer therapy. Seminars in Oncology (in press).

    Google Scholar 

  50. Freeman SM, Whartenby KA, Koeplin DS, et al. Tumor regression when a fraction of the tumor mass contains the HSV-TK gene. J Cell Biol 1992; 16F: 47.

    Google Scholar 

  51. Gastl G, Finstad CL, Guarini A, et al. Retroviral vectormediated lymphokine gene transfer into human renal cancer cells. Cancer Res 1992; 52(22) 6229–36.

    PubMed  CAS  Google Scholar 

  52. Gansbacher B, Bannerji R, Daniels B, et al. Retroviral vector-mediated gamma interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res 1990; 50: 7820–7825.

    PubMed  CAS  Google Scholar 

  53. Grimm EA, Robb RJ, Roth JA, et al. Lymphokine activated killer cell phenomenon. III. Evidence that IL-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells. J Exp Med 1983; 158: 1356–1361.

    PubMed  CAS  Google Scholar 

  54. Grimm EA, Mazumder ZA, Zhang HZ, and Rosenberg SA. Lymphokine activated kiler cell phenomenon. Lysis of natural killer-resistant fresh sholid tumor cells by interleukin 2-activated autologous human peripheral bloood lymphocytes. J Exp Med 1982; 155: 1823–1830.

    PubMed  CAS  Google Scholar 

  55. Grossman RG, Woo SL. Gene therapy for brain tumors: regression of experimental gliomas by adenovirus mediated gene transfer in vivo. Proc Natl Acad Sci 1994; 91(8) 3054–7.

    PubMed  Google Scholar 

  56. Harris CC, Hollstein M. Tumor suppressor genes. PPO Updates 1992; 6: 1–12.

    Google Scholar 

  57. Hart IR. Targeting of cytokine gene expression to malignant melanoma cells using tissue specific promoter sequences. Ann Oncol 1994; 5 Suppl4: 59–65.

    Google Scholar 

  58. Hasegawa Y, Emi N, Shimokata K, et al. Gene transfer of herpes simplex virus type I thymidine kinase gene as a drug sensitivity gene into human lung cancer cell lines using retroviral vectors. Am J Respir Cell Mol Biol 1993; 8(6) 655–61.

    PubMed  CAS  Google Scholar 

  59. Hersh EM. Phase I study of immunotherapy of malignant melanoma by direct gene transfer. Human Gene Therapy 1994;5:1371–1384.

    PubMed  CAS  Google Scholar 

  60. Holt JT, Redner RL, Nienhuis AW. (1988) An oligomer complementary to c-myc inhibits proliferation of HL60 promyelocytic cells and induces differentiation. Mol Cell Biol 1988; 8: 963–73.

    PubMed  CAS  Google Scholar 

  61. Holt JT, Gopal TV, Moulton AD, Nienhuis AW. Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc Natl Acad Sci 1986; 83: 4794–99.

    PubMed  CAS  Google Scholar 

  62. Holt JT. Antisense rescue defines specialized and generalized functions for c-fos protein during cell growth. Mol CelBiol 1993; 13: 3821–30.

    CAS  Google Scholar 

  63. Horwitz MS. Adenoviridae and their replication. In: Virology, pp. 1679-1740, Fields, B.N., Knipe, D.M. (eds.) Raven Press, New York, 1990.

    Google Scholar 

  64. Huang H-JS, Yee J-K, Shew J-Y, Chen PL. Suppression of the neoplastic phenotype by replacement of the Rb gene in human cancer cells. Science 1988; 242: 1563–6.

    PubMed  CAS  Google Scholar 

  65. Huber BE, Richards CA, Krenitsky TA. (1991) Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc Natl Acad Sci 1991; 88: 8039–8043.

    PubMed  CAS  Google Scholar 

  66. Hurst H, Lemoine N. Therapeutic strategies using c-erb- B-2 promoter controlled drug activation. Ann NY Acad Sci 1994;716:115–24.

    PubMed  Google Scholar 

  67. Hwu P, Yannelli J, Kriegler M, et al. Fumctional and molecular characterizartion of tumor infiltrating lymphocytes transduced with tumor necrosis factor alpha cDNA for the gene therapy of cancer in humans. J Immunol 1993; 150(9) 4104–15.

    PubMed  CAS  Google Scholar 

  68. Jicha DL, Mule JJ, Rosenberg SA. Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med 1991; 174(6) 1511–5.

    PubMed  CAS  Google Scholar 

  69. Jicha DL, Schwarz S, Mule J J, Rosenberg SA. Interleukin- 7 mediates the generation and expansion of murine allosensitized and antitumor CTL. Cell Immunol 1992; 141(1) 71–83.

    PubMed  CAS  Google Scholar 

  70. June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Imm Today 1994; 15: 321–31.

    CAS  Google Scholar 

  71. Jung S, Schluessner HJ. Human T lymphocytes recognize a peptide of single point-mutated oncogenic ras proteins. J Exp Med 1991; 173:273–6.

    PubMed  CAS  Google Scholar 

  72. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264:436–40.

    PubMed  CAS  Google Scholar 

  73. Kantoff PW, Kohn DB, Mitsuya H, et al. (1986) Correction of ADA deficiency in cultured human B and T cells by retroviral mediated gene transfer. Proc Natl Acad Sci 1986; 83(17) 6563–7.

    PubMed  CAS  Google Scholar 

  74. Karpati G, Acsadi G. The potential for gene therapy in Duchenne muscular dystrophy and other genetic muscle diseases. Muscle Nerve 1993; 16(11) 1141–53.

    PubMed  CAS  Google Scholar 

  75. Keating A., Toneguzzo F. Gene transfer by electroporation: a model for gene therapy. Bone Marrow Purg and Proc 1990:491–498.

    Google Scholar 

  76. Klein G. The approaching era of the tumor suppressor gens. Science 1987; 238: 1539–1545.

    PubMed  CAS  Google Scholar 

  77. Lafreniere R, Rosenberg SA. (1985) Succesful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res 1985; 45: 3735–3741.

    PubMed  CAS  Google Scholar 

  78. Lafreniere R, Rosenberg SA. Adoptive immunothearpy of murine hepatic metastases with lymphokine activated killer cells and recombinant interleukin 2 can mediate the regression of both immunogenic and nonimmunogenic sarcomas and an adenocarcinoma. J Imm 1985; 135: 4273–4280.

    CAS  Google Scholar 

  79. Levine AJ, Momand J. Tumor suppressor genes, the p53 and retinblastoma sensitivity genes and gene products. Biochim. Biophys Acta 1990; 1032: 119–136.

    PubMed  CAS  Google Scholar 

  80. Levine AJ. The tumor suppressor genes. Annu Rev Biochem 1993; 62: 623–51.

    PubMed  CAS  Google Scholar 

  81. Levrero M, Barban S, Manteca S, et al. Defective and nondefective adenoviral vectors for expressing foreign genes in vitro and in vivo. Gene 1991; 101: 195–202.

    PubMed  CAS  Google Scholar 

  82. Liu TJ, Zhang W-W, Taylor DL, et al. Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 1994; 54(14) 3662–7.

    PubMed  CAS  Google Scholar 

  83. Lohmann D, Ruhri C, Schmitt M, et al. Accumulation of p53 protein as an indicator for p53 gene mutation in breast cancer. Diag Mol Pathol 1993; 2: 36–41.

    CAS  Google Scholar 

  84. Lotze MT, Grimm EA, Mazumder A, et al. In vitro growth of cytotoxic human lymphocytes. IV Lysis of fresh and cultured autologous tumor by lymphocytes cultured in T cell growth factor. Cancer Res 1981; 41: 4420–4425.

    PubMed  CAS  Google Scholar 

  85. Lotze MT, Rubin JT. Gene therapy of cancer: a pilot study of IL-4 gene modified fibroblasts admixed with autologous tumor to elicit an immune response. Human Gene Therapy 1994; 5(1) 41–55.

    PubMed  CAS  Google Scholar 

  86. Mackensen A, Carcelain G, Viel S, et al. Direct evidence to support the immunosurveillance concept in a human regressive melanoma. J Clin Invest 1994; 93(4) 1397–402.

    PubMed  CAS  Google Scholar 

  87. Mann R and Baltimore D. Varying the position of a retroviral packaging sequence results in the encapsidation of both unspliced and spliced RNAs. J Virol 1985; 5 4: 401– 407.

    Google Scholar 

  88. Marchand M, Brasseur F, vanderBruggen P, et al. Perspectives for immunization of HLA-A1 patients carrying a malignant melanoma expressing gene MAGE-l. Dermatology 1993; 186: 278–80.

    PubMed  CAS  Google Scholar 

  89. Marcus SG, Perry-Lalley D, Mule JJ, et al. The use of interleukin-6 to generate tumor infiltrating lymphocytes with enhanced in vivo antitumor activity. J Immunother Emphasis Tumor Immunol 1994; 15(2) 105–12.

    PubMed  CAS  Google Scholar 

  90. Marin MC, Hsu B, Meyn RE, et al. Evidence that p53 and bcl-2 are regulators of a common cell death pathway important for in vivo lymphomagenesis. Oncogene 1994; 9(11) 3107–12.

    PubMed  CAS  Google Scholar 

  91. Markowitz D, Goff S, and Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol 1988; 62: 3725–3732.

    Google Scholar 

  92. Markowitz D, Goff S, Bank A. Construction and use of a safe and efficient amphotropic packaging cell line. Virol 1988; 167:400–406.

    CAS  Google Scholar 

  93. Miescher S, Whiteside TL, Moretta L, Von Fliedner V Clonal and frequency analyses of tumor infiltrating T lymphocytes from human solid tumors. J Imm 1987; 138: 4004–4011.

    CAS  Google Scholar 

  94. Miller AD, Bender MA, Harris EAS, et al. Design of retroviral vectors for transfer and expression of human beta globin gene. J Virol 1988; 62:4337–4345.

    PubMed  CAS  Google Scholar 

  95. Miller AD, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 1986; 6: 2895–2902.

    PubMed  CAS  Google Scholar 

  96. Miller AD, Rossman GJ. Improved retroviral vectors for gene transfer and expression. Biotechniques 1989; 7: 980– 990.

    Google Scholar 

  97. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10(8) 4239–4242.

    PubMed  CAS  Google Scholar 

  98. Miller AD. Human gene therapy comes of age. Nature 1992;357:455–460.

    PubMed  CAS  Google Scholar 

  99. Mitani K, Wakamiya M, Caskey CT. Long term expression of retroviral transduced adenosine deaminase in human primitive hematopoietic progenitors. Human Gene Therapy 1993; 4(1) 9–16.

    PubMed  CAS  Google Scholar 

  100. Mizuno M, Yoshida J, Sugita K, et al. (1990) Growth inhibition of glioma cells transfected with the human beta interferon gene by liposomes coupled with a monoclonal antibody. Cancer Res 1990; 50: 7826–7829.

    PubMed  CAS  Google Scholar 

  101. Mizutani Y, Fukumoto M, Bonavida B, Yoshida O. Enhancement of sensitivity of urinary bladder tumor cells to cisplatin by c-myc antisense oligonucleotide. Cancer 1994; 74(9) 2546–54.

    PubMed  CAS  Google Scholar 

  102. Montgomery DL, Shiver JW, Leander KR, et al. Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors. DNA Cell Biol 1993; 12(9) 777–83.

    CAS  Google Scholar 

  103. Momand J, Zambetti GP, Olson DC, The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53 mediated transactivation. Cell 1992; 69(7) 1237–45.

    PubMed  CAS  Google Scholar 

  104. Moolten FL. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cane Res 1986; 46: 5276–5281.

    CAS  Google Scholar 

  105. Moolten FL. Mosaicism induced by gene insertion as a means of improving chemotherapeutic selectivity. Crit Rev in Immunol 1990; 10: 203–233.

    CAS  Google Scholar 

  106. Moolten FL and Wells JM. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Can Inst 1990; 82: 297–300.

    CAS  Google Scholar 

  107. Morgan RA, Cornetta K, Anderson WF. Applications of the polymerase chain reaction in retroviral mediated gene transfer and the analysis of gene-marked human TIL cells. Hum GeneTher 1990; 1: 135–49145.

    PubMed  CAS  Google Scholar 

  108. Mroz PJ, Moolten FL. Retrovirally transduced E. coli gpt genes combine selectability with chemosensitivity capable of mediating tumor eradication. Human Gene Ther 1993; 4: 589–595.

    CAS  Google Scholar 

  109. Mueller SN, Blaese RM, Oldfield EH. Intrathecal gene therapy for malignant leptomeningeal neoplasia. Cancer Res 1994; 54(8) 2141–5.

    PubMed  Google Scholar 

  110. Mule JJ, Shu S, Schwarz SL, Rosenberg SA. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin 2. Science 1985; 225: 1487–1489.

    Google Scholar 

  111. Mule JJ, Shu S, Rosenberg SA. The anti-tumor efficacy of lymphokine activated killer cells and recombinant interleukin 2 in vivo. J Immunol 1985; 135: 646–652.

    PubMed  CAS  Google Scholar 

  112. Mule JJ, Custer MC, Travis WD, and Rosenberg SA. Cellular mechanisms of the antitumor activity of recombinant IL-6 in mice. J Imm 1992; 148:2622–2629.

    CAS  Google Scholar 

  113. Mullen CA, Kilstrup M, Blaese RM. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci 1992; 89: 33–37.

    PubMed  CAS  Google Scholar 

  114. Muller WJ, Sinn E, Pattengale PK, et al. Single step induction of mammary adenocarcinoma in trangenic mice bearing the activated c-neu oncogene. Cell 1988; 54: 105–54.

    PubMed  CAS  Google Scholar 

  115. Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Imm 1987; 138: 989–995.

    CAS  Google Scholar 

  116. Nabel GJ. Immunotherapy for cancer by direct gene transfer into tumors. Human Gene Therapy 1994; 5(1) 57–77.

    PubMed  CAS  Google Scholar 

  117. Nabel GJ, Nabel EG, Yang ZY, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci 1993; 90: 11307–11311136.

    PubMed  CAS  Google Scholar 

  118. Newcomb EW, Madonia WJ, Pisharody S, et al. A correlative study of p53 protein altertion and p53 gene mutation in glioblastoma multiforme. Brain Pathol 1993; 3(3) 229–35.

    PubMed  CAS  Google Scholar 

  119. Oldfield EH, Ram Z, Culver KW, et al. Gene therapy for the treatment of brain tumors using intratumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Hum Gene Ther 1993; 4(1) 39–69.

    PubMed  CAS  Google Scholar 

  120. Olsen DC, Marechal V, Momand J, et al. Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. Oncogene 1993; 8(9) 2353–60.

    Google Scholar 

  121. Ogasawara M, Rosenberg SA. Enhanced expression of HLA molecules and stimulation of autologous human tumor infiltrating lymphocytes following transduction of melanoma cells with gamma interferon genes. Cancer Res 1993; 53(15) 3561–8.

    PubMed  CAS  Google Scholar 

  122. Osaki T, Tanio Y, Tachibana I, et al. Gene therapy for carcinoembryonic antigen producing human lung cancer cells by cell type specific expression of herpes simplex virus thymdine kinase gene. Cancer Res 1994; 54(20) 5258–61.

    PubMed  CAS  Google Scholar 

  123. O’Shaughnessy JA, Cowan KH, Nienhuis AW, et al. Retroviral mediated transfer of the human multidrug resistance gene (MDR-1) into hematopoietic stem cells during autologous transplantation after intensive chemotherapy for metastatic breast cancer. Human Gene Therapy 1994; 5(7) 891–911.

    PubMed  Google Scholar 

  124. Peace DJ, Smith JW, Disis ML, et al. Induction of T cells specific for the mutated segment of oncogneic p21 ras protein by immunization in vivo with the oncogenic protein. J Immunother 1993; 14: 110–4.

    CAS  Google Scholar 

  125. Pitts J. Cancer gene therapy: a bystander effect using the gap junctional pathway. Mol Carcin 1994; 11(3) 127–30.

    CAS  Google Scholar 

  126. Prigozy T, Dalrymple K, Kedes L, Shuler C. Direct DNA injection into mouse tongue muscle for analysis of promoter function in vivo. Somat. Cell Mol Gemnnet 1993; 19(2) 111–22.

    CAS  Google Scholar 

  127. Porgador A, Bannerji R, Watanabe Y, et al. Antimetastatic vaccination of tumor bearing mice with two types of IFNgamma gene inserted tumor cells. J Immunol 1993; 150(4) 1458–70.

    PubMed  CAS  Google Scholar 

  128. Ram Z, Walbridge S, Shawker T, et al. The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature and growth of 9L glioma in rats. J Neurosurg 1994; 81(2) 256–60.

    PubMed  CAS  Google Scholar 

  129. Rich DP, Couture M, Cardoza LM, et al. Development and analysis of recombinant adenovirus for gene therapy of cystic fibrosis. Human Gene Therapy 1993; 4:461–76.

    PubMed  CAS  Google Scholar 

  130. Rosenberg SA. Karnofsky Memorial Lecture. The immunotherapy and gene therapy of cancer. J Clin Oncol 1992; 10(2) 180–99.

    CAS  Google Scholar 

  131. Rosenberg SA.Human Gene Therapy 1992; 3(1) 75–90.

    Google Scholar 

  132. Rosenberg SA, Aebersold PM, Cornetta K, et al. Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. New Engl J Med 1990;323:570–578.

    PubMed  CAS  Google Scholar 

  133. Rosenfeld MA, Siegfried W, Yoshimara K, et al. (1991) Adenovirus-mediated transfer of a recombinant alpha 1 antitrypsin gene to the lung epithelium in vivo. Science 1991;252:431–434.

    PubMed  CAS  Google Scholar 

  134. Rosenfeld MA, Yoshimura K, Trapnell BC, et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 1992;65:183–185.

    Google Scholar 

  135. Sanda MG, Ayyagari SR, Jaffee EM, et al. (1994) Demonstration of a rational strategy for human prostate cancer gene therapy. J Urol 1994; 151(3) 622–8.

    PubMed  CAS  Google Scholar 

  136. Sandberg-Nordqvist AC, Stahlbom PA, Reinecke M, et al. Characterization of insulin-like growth factor 1 in human primary brain tumors, Cancer Res 1993; 53(11) 2475–8.

    PubMed  CAS  Google Scholar 

  137. Sawami H, Ito K, Norioka M, et al. Transfer of the adenosine deaminase gene of a B lymphoblastoid cell line to an ADA deficienct LCL by a microcell mediated chromosome transfer technique. Nippon Ketsucki Gakkai Zasshi 1989; 52(6) 1033–44,

    CAS  Google Scholar 

  138. Seigler HF, Darrow TL, Abdel-Waheb Z, et al. A phase I trial of human gamma interferon transduced autologous tumor cells in patients with disseminated malignant melanoma. Human Gene Therapy 1994; 5(6) 761–77.

    PubMed  CAS  Google Scholar 

  139. Short MP, Choi B, Lee JK, Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J of Neurosci Res 1990; 27: 427–433.

    CAS  Google Scholar 

  140. Sinn E, Muller W, Pattengale P, et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes: synergistic actions of oncogenes in vivo. Cell 1987; 49: 465–74.

    PubMed  CAS  Google Scholar 

  141. Sorrentino BP, Brandt SJ, Bodine D, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR-1. Science 1992; 257: 99–103.

    PubMed  CAS  Google Scholar 

  142. Sorscher EJ, Peng S, Bebok Z, et al. Tumor cell bystander killing in colonic carcinoma utilizing the E. coli DeoD gene to generate toxic purines. Gene Ther 1994; 1: 233–238.

    PubMed  CAS  Google Scholar 

  143. Stuber G, Leder GH, Storkus WT, et al. Identification of wild type and mutant p53 peptids binding to HLA-A2 assessed by a peptide loading-deficient cell line assay and a novel major histocompatibility complex class I peptide binding assay. Eur J Immunol 1994; 24(3) 765–8.

    PubMed  CAS  Google Scholar 

  144. Sznol M.A phase I trial of B7-transfected lethally irradiated allogeneic melanoma cell lines to induce cell mediated immunity against tumor associated antigens presented by HLA-A2 or HLA-A1 in patients with stage IV melanoma. RAC meeting materials pp. 1505-37. Protocol 9312-065. Office of Recom. DNA Activities, NIH, Bethesda, MD, 1993.

    Google Scholar 

  145. Takagi S, Chen K, Schwarz R, et al. Functional and phenotypic analysis of tumor infiltrating lympocytes isolated from human primary and metastatic liver tumors and cultured in recombinant interleukin 2. Cancer 1989; 63:102–111

    PubMed  CAS  Google Scholar 

  146. Takamiya Y, Short MP, Moolten FL, et al. An experimental model of retrovirus gene therapy for malignant brain tumors. J Neurosurg 1993; 79(1) 104–110.

    PubMed  CAS  Google Scholar 

  147. Tepper RI. The tumor-cytokine transplantation assay and the antitumor activity of interleukin-4. Bone Marr Transp 1992; 9S: 177–181.

    Google Scholar 

  148. Tepper RI, Pattengale PK, and Leder P. Murine interleukin 4 displays potent anti-tumor activity in vivo. Cell 1989; 57:503–512.

    PubMed  CAS  Google Scholar 

  149. Topalian SL, Solomon D, Rosenberg SA. Tumor-specific cytolysis by lymphcytes infiltrating human melanomas. J Imm 1989; 142:3714–3725.

    CAS  Google Scholar 

  150. Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993; 259: 368–70.

    PubMed  CAS  Google Scholar 

  151. Tripathy D, Benz CC. Activated oncogenes and putative tumor suppressor genes involved in human breast cancers. Cancer Treat Res 1992; 63: 15–60.

    PubMed  CAS  Google Scholar 

  152. Trojan J, Johnson TR, Rudin SD, et al. Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNA. Science 1993; 259(5091) 94–7.

    PubMed  CAS  Google Scholar 

  153. Tohmatsu A, Okino T, Stabach P, et al. Analysis of cytolytic effector cell response in vitro against autologous human tumor cells genetically altered to synthesize interleukin-2. Immunol Lett 1993; 35(1) 51–7.

    PubMed  CAS  Google Scholar 

  154. Tsai SC, Gansbacher B, Tait L, et al. Induction of antitumor immunity by interleukin-2 gene-transduced mouse mammary tumor cells versus transduced mammary stromal fibroblasts. J Natl Cancer Inst 1993; 85(7) 546–53.

    PubMed  CAS  Google Scholar 

  155. Uchimaya A, Hoon DS, Morisaki T, et al. Transfection of interleukin 2 gene into human melanoma cells augments cellular immune response. Cancer Res 1993; 53(5) 949– 52.

    Google Scholar 

  156. Varmus H. Oncogenes and the molecular origins of cancer. pp. 3–44. Cold Spring Harbor Press, New York, 1993.

    Google Scholar 

  157. Vile RG, Hart IR. In vitro and in vivo targetting of gene expression to melanoma cells. Cancer Res 1993; 53(5) 962–7.

    PubMed  CAS  Google Scholar 

  158. Vile RG, Nelson JA, Castleden S, et al. Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Research 1994; 54(23) 6228–34.

    PubMed  CAS  Google Scholar 

  159. Wang NP, Hoang T, Lee W-H, and Lee EY-HP. Tumor suppressor activity of Rb and p53 genes in human breast carcinoma cells. Oncogene 1993; 8: 279–88.

    PubMed  CAS  Google Scholar 

  160. Wang NP, Hoang T, Lee W-H, Lee EY-HP. Tumor suppressor activity of Rb and p53 genes in human breast carcinoma cells. Oncogene 1993; 8: 279–88.

    PubMed  CAS  Google Scholar 

  161. Wolff JA, Friedmann T. Approaches to gene therapy in disorders of purine metabolism. Rheum Dis Clin North Am 1988; 14(2) 459–77.

    PubMed  CAS  Google Scholar 

  162. Wright C, Mellon K, Johnston P, et al. Expression of p53, c-erbB2 and the epidermal growth factor receptor in transitional cell carcinoma of the human urinary bladder. Br J Cancer 1991; 63: 967–70.

    PubMed  CAS  Google Scholar 

  163. Wu GY, Wilson JM, Shalaby F, et al. Receptor mediated gene delivery in vivo. Partial correction of genetic analbuminemia in Nagase rats. J Biol Chem 1991; 266(22) 14338–42.

    PubMed  CAS  Google Scholar 

  164. Yron I, Wood TA, Spiess PJ, Rosenberg SA. In vitro growth of murine T cells. V The isolation and growth of lymphoid cell infiltrating syngeneic solid tumors. J Immunol 1980; 125:238–241.

    PubMed  CAS  Google Scholar 

  165. Zhang W-W, Fang X, Branch CD, et al. Generation and identification of recombinant adenovirus by liposome mediated transfection and PCR analyses. Biotechniques 1993; 15:868–72.

    PubMed  CAS  Google Scholar 

  166. Zhang W-W, Fang X, Mazur W, et al. High efficiency gene transfer and high level expression of wild type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer GeneTherapy 1994; 1: 5–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whartenby, K.A., Marrogi, A.J., Freeman, S.M. (1998). Clinical Approaches to Cancer Gene Therapy. In: Oldham, R.K. (eds) Principles of Cancer Biotherapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0029-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0029-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6501-6

  • Online ISBN: 978-94-009-0029-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics