Skip to main content

Exploiting Genome Plasticity for the Detection of Hypervariable Sequences

  • Chapter
Molecular Tools for Screening Biodiversity

Abstract

As discussed previously, ‘plants are not green animals’ (1) in the sense that: (i) the differentiation of germinal and somatic cell lines occurs fairly late in plant development and is not as clear cut as in animals; (ii) in many cases, asexual propagation prevails in plants or occurs at the same time as sexual reproduction; (iii) the generation times of plants can be extremely long; (iv) somatic genome plasticity is much higher in plants than in animals and may improve individual adaptation, particularly in vegetatively propagated plant species and in general in long-lived species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buiatti, M. (1988). Information flux and constraints in development and evolution, a critical review. In “Chaos and complexity”, (eds R. Livi, S. Ruffo, S. Ciliberto, M. Buiatti) World Scientific, Singapore: 331–345.

    Google Scholar 

  2. Buiatti, M., and Gimelli, F. (1993). Somaclonal variation in ornamentals. In: “Creating Variation in Ornamentals”. Eucarpia, San Remo, 1–5 March 1993 (ed. T. Schiva) pp. 5–24.

    Google Scholar 

  3. D’Amato, F and Hoffman Ostenhof, O. (1956). Metabolism and spontaneous mutations in plants. Advances in Genetics 8: 1–26.

    Article  Google Scholar 

  4. Durrant, A. and Jones, T.W.A. (1971). Reversion of induced changes in amount of nuclear DNA in Linum. Heredity, 27: 431–439.

    Article  Google Scholar 

  5. Meins, F. (1983). Heritable variation in plant cell culture. Annual Review of Plant Physiology 34: 327–346.

    Article  Google Scholar 

  6. Buiatti, M. (1977). DNA amplification and tissue cultures, In: “Applied and Fundamental Aspects of Plant Tissue and Organ Culture” (eds J. Reinert and J.P.S. Bajaj), Springer Verlag: 358–374.

    Google Scholar 

  7. Holliday, R., and Pugh, J.E. (1975). DNA modification mechanisms and gene activity during development. Science, 187: 226–232.

    Article  CAS  Google Scholar 

  8. Cullis, Ch. A., (1984). Environmentally induced DNA change. In: Evolutionary Theory, Paths into the Future (ed. J.W. Pollard), J. Wiley and Sons, London. pp. 203–214.

    Google Scholar 

  9. Sutherland, G. and Richards, R.I. (1995). Simple tandem repeats and human genetic disease, Proceedings of the National Academy of Sciences USA 92: 3636–3641.

    Article  CAS  Google Scholar 

  10. Thibodeau, S.N., Bren, G. and Schaid, D (1993). Microsatellite instability in cancer of the proximal colon. Science, 260: 816–819.

    Article  CAS  Google Scholar 

  11. Blakely, C.M. and Steward, F.C. (1964). Growth and organized development of cultured cells VII: Cellular variation. American Journal of Botany 51: 806–815.

    Google Scholar 

  12. Buiatti, M. (1990). The use of cell and tissue cultures for mutation breeding. In: Science for Plant Breeding. Eucarpia, Gottingen, Paul Parey, pp. 179–201.

    Google Scholar 

  13. Karp, A. (1991). On the current understanding of somaclonal variation. In Oxford surveys of Plant Molecular Cell Biology, (ed. B.J. Miflin), Oxford University Press, London: pp. 1–58.

    Google Scholar 

  14. Sibi, M. (1986). Non-mendelian heredity. Genetic analysis of variant plants regenerated from in vitro culture: epigenetics and epigenics. In: CEC Symposium: Somaclonal Variation and Crop Improvement, 1985 Gembloux. Belgium (ed. J. Semal) pp. 53–83.

    Google Scholar 

  15. Storti, E., Bogani, P, Bettini, P, Bittini, P., Guar-diola, M.L., Pellegrini, M.G., Inzé, D and Buiatti, M. (1994). Modification of competence for in vitro response to Fusarium oxysporum in tomato cells: II Effect of the integration of Agrobacterium tumefaciens genes for auxin and cytokinin synthesis. Theoretical and Applied Genetics 88: 89–96.

    Article  CAS  Google Scholar 

  16. Guardiola, M.L., Bettini, P., Bogani, P., Pellegrini, M.G., Storti, E., Bittini P and Buiatti, M. (1994). Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. I: selection from a susceptible cultivar for high and low polysaccharide content. Theoretical and Applied Genetics 87: 988–995.

    Article  CAS  Google Scholar 

  17. Bennici, A., Buiatti, M., D’Amato F. and Pagliai, M. (1971). Nuclear behaviour in Haploppapus gracilis grown in vitro in different culture media. Coll. Int. CNRS n° 193. Les cultures de tissus de plantes. pp.245–253.

    Google Scholar 

  18. Lörz, H. and Scowcroft, W.B. (1983). Variability among plants and their progeny regenerated from protoplasts of Su/su heterozygotes of Nicotiana tabacum. Theoretical and Applied Genetics 66: 67–75.

    Article  Google Scholar 

  19. Bogani, P., Simoni, A., Liò, P, Scialpi A. and Buiatti, M. (1996). Genome flux in tomato cell clones cultured in vitro in different physiological equilibria. II A RAPD analysis of variability. Genome, 39: 846–853.

    Article  CAS  Google Scholar 

  20. Rus-KorteKaas, W., Smulders, M.J.M., Arens, P and Vosman, B. (1994). Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA. Genome, 37: 375–381.

    Article  CAS  Google Scholar 

  21. D’Amato, F. (1977). Nuclear Cytology in Relation to Development. University Press Cambridge.

    Google Scholar 

  22. Bennici, A., Buiatti, M. and D’Amato, F. (1968) Nuclear conditions in haploid Pelargonium in vivo and in vitro. Chromosoma 24 194–210.

    Article  Google Scholar 

  23. Nagl, W. (1990). Gene amplification and related events, In: Somaclonal Variation and Crop Improvement I, (ed. Y.P.S. Bajaj) pp. 152–201.

    Google Scholar 

  24. Durante, M., Geri, C., Nuti Ronchi, V., Martini, G., Grisvard, E., Giorgi, L., Parenti R. and Buiatti, M. (1977). Inhibition of Nicotiana glauca pith tissue proliferation through incorporation of 5-BrdU into DNA. Cell Differentiation 6: 53–59.

    Article  CAS  Google Scholar 

  25. Durante, M., Geri, C., Buiatti, M., Baroncelli, S., Parenti, R., Nuti Ronchi, V, Martini, G., Collina Grenci, F., Grisvard J. and Guillé, E. (1982). DNA heterogeneity and genetic control of tumorogenesis in Nicotiana tumorous and non-tumorous genotypes. Developmental Genetics 3: 25–39.

    Article  CAS  Google Scholar 

  26. Bogani, P., Simoni, A., Bettini, P., Mugnai, M., Pellegrini M.G. and Buiatti, M. (1995). Genome flux in tomato auto and auxotrophic cell clones cultured in different auxin/cytokinin equilibira. I DNA multiplicity and methylation levels. Genome, 38: 902–912.

    CAS  Google Scholar 

  27. Arnholdt-Schmitt, B., Herterich, S. and Neumann, K.H. (1995). Physiological aspects of genome variability in tissue culture. I Growth phase-dependent differential DNA methylation of the carrot genome (Daucus carota) during primary culture. Theoretical and Applied Genetics, 91: 809–815.

    CAS  Google Scholar 

  28. Brown, P.T.H., Yoneyama, K. and Lörz, H. (1989). An investigation into the role of azacytidine in tissue culture. Theoretical and Applied Genetics, 78: 321–328.

    Article  CAS  Google Scholar 

  29. Galowd, J.P., Gaspar, T and Boyer, N. (1993). Inhibition of internode growth due to mechanical stress in Bryonia dioica: relationship between changes in DNA methylation and ethylene metabolism. Physiologia Plantarum, 87: 25–30.

    Article  Google Scholar 

  30. Smulders, M.J.M., Rus-KorteKaas, W. and Vosman, B. (1995). Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theoretical and Applied Genetics. 91: 1257–1264.

    Article  CAS  Google Scholar 

  31. Morrish, KM. and Vasil, I.K. (1989). DNA methylation and embryogenic competence in leaves and callus of napiergrass (Pennisetum purpureum Shum.) Plant Physiology 90: 37–40.

    Article  CAS  Google Scholar 

  32. Palmgren, G., Mattson, O. and Okkels, T. (1991). Specific levels of DNA methylation in various tissues, cell lines and cell types of Daucus carota. Plant Physiology, 95: 174–178.

    Article  CAS  Google Scholar 

  33. Neumann, K.H. (1972). Untersuchungen über den Eibfluss des kinetins und des Eisens auf den Nukleinsaüre-und protein-stoffwechsel von Karrotten gewebekulturen. d. pflanzener-naeht. Bodenkai., 131: 211–220.

    Article  CAS  Google Scholar 

  34. Kaeppler, S.R., and Phillips, R.L. (1993). Tissue culture-induced DNA methylation variation in maize. Proceedings of the National Academy of Sciences USA, 90: 8773–8776.

    Article  CAS  Google Scholar 

  35. Arnhodt-Schmitt, B. (1995). Physiological aspects of genome variability in tissue culture. II Growth phase-dependent quantitative variability of repetitive Bst NI fragments of primary cultures of Daucus carota. Theoretical and Applied Genetics 91: 816–823.

    Google Scholar 

  36. Phillips, R.L., Kaeppler M.S. and Olhoft, P. (1994). Genetic instability of plant tissue cultures: breakdown of normal controls. Proceedings of the National Academy of Sciences USA 91: 5222–5226.

    Article  CAS  Google Scholar 

  37. Hopkin, K. (1995). Hairpins and heterochromatin: how triplet repeats may lead to disease. The Journal of National Institute of Health Research 7: 45–48.

    Google Scholar 

  38. Boyes, J., and Bird, A. (1992). Repression of genes by DNA methylation depends con CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO Journal. 11: 327–333.

    CAS  Google Scholar 

  39. Chen, X., Sanathana Mariappan, S.V., Catasti, P., Ratliff, R., Moyzis, R.K., Laayoun, A., Smith, S., Bradbury, E.M. and Gupta, G. (1995). Hairpins are formed by the single DNA strands of the fragile X triplet repeats: Structure and biological implications. Proceedings of the National Academy of Sciences USA, 92: 5199–5203.

    Article  CAS  Google Scholar 

  40. Peschke V. M. and Phillips, R.L. (1991). Activation of the maize transposable element Soppressor-mutator (Spm) in tissue culture. Theoretical and Applied Genetics 81: 90–97.

    Article  Google Scholar 

  41. Hirochika, H. (1993). Activation of tobacco retrotransposon during tissue culture. EMBO Journal 12: 2521–2528.

    CAS  Google Scholar 

  42. Kawata, M., Ohniya, A., Shimamoto, Y., Oono, K., Takaiwa, F. (1995). Structural changes in the plastid DNA of rice (Oryza sauva L.) during tissue culture. Theoretical and Applied Genetics. 90: 364–371.

    Article  CAS  Google Scholar 

  43. Paven, M.C., Henry, Y, Buyser, J.D., Corre, F., Hartmann, C. and Rode, A. (1992). Organ tissue-specific changes in the mitochondrial genome organization of in vitro cultures derived from different expiants of a single wheat variety. Theoretical and Applied Genetics, 85: 1–8.

    Google Scholar 

  44. Davies, P.A., Pallotta, M.A., Ryan, S.A, Scowcroft, W.R. and Larkin, P.J. (1986). Somaclonal variation in wheat: genetic and cytogenetic characterization of alcohol dehydrogenase I mutants. Theoretical Applied Genetics, 72: 644–652.

    Article  CAS  Google Scholar 

  45. Avanzi, S., Maggini, F. and Innocenti, A.M. (1973). Amplification of ribosomal cistrons during mutation of metaxylem in the root of Allium cepa. Protoplasma, 76: 197–210.

    Article  CAS  Google Scholar 

  46. McClintock, B. (1984). The significance of responses of the genome to challenge, Science, 226: 729–801.

    Article  Google Scholar 

  47. Cullis, C.A. and Cleary, W. (1986). DNA variation in flax tissue cultures. Canadian Journal of Genetics and Cytology. 28: 247–251.

    CAS  Google Scholar 

  48. Maggini, F., Tucci, G., Demartis, A, Gelati, M.T. and Avanzi, S. (1992). Ribosomal RNA genes of Phaseolus coccineus L. Plant Molecular Biology 18: 1073–82.

    Article  CAS  Google Scholar 

  49. Oxford, S.J., Steele Scott, N. and Timmis, J.N. (1995). A hypervariable middle repetitive DNA sequence from citrus. Theoretical and Applied Genetics 91: 1248–1252.

    Google Scholar 

  50. Brown, P.T.H., Lange, F. D., Kranz, E. and Lörz, H. (1993). Analysis of single protoplasts and regenerated plants by PCR and RAPD technology. Molecular and General Genetics 237: 311–317.

    CAS  Google Scholar 

  51. Pham Huy Bao, Granata, S., Castiglione, S., Wang, G., Giordani, C., Cuzzoni, E., Damiani, G., Bandi, C., Datta, S. K., Datta, K., Potrykus, I., Callegarin, A. and Sala, F. (1996). Evidence for genomic changes in transgenic rice (Oryza sativa L.) recovered from protoplasts. Transgenic Research, in the press.

    Google Scholar 

  52. Storti, E., Bogani, P., Bettini, P., Bonzi-Morassi, L., Pellegrini, M.G., Matteo, M., Simeti, C. and Buiatti, M. (1989). The pleiotropic phenotype of tomato cells selected for altered response to Fusarium oxysporum cell wall components. Theoretical and Applied Genetics 78: 689–695.

    Article  Google Scholar 

  53. Storti, E., Latil, C., Salti, S., Bettini, P., Pellegrini, M.G., Simeti, C. Molnar, A. and Buiatti, M. (1992). The in vitro physiological phenotype of tomato resistance to Fusarium oxysporum f. sp. lycopersici. Theoretical and Applied Genetics 84: 123–128.

    Article  Google Scholar 

  54. Wright, S. (1931). Evolution in mendelian populations, Genetics, 16: 97–159.

    CAS  Google Scholar 

  55. Kauffman, S. (1995). At home in the Universe, Oxford University Press.

    Google Scholar 

  56. Rollo, C.D. (1994). Phenotypes. Chapman and Hall, London.

    Google Scholar 

  57. Buiatti, M., and Bogani, P. (1995). Physiological complexity and plant genetic manipulation. Euphytica, 85: 135–147.

    Article  Google Scholar 

  58. Bogani, P., Liò, P., Intrieri, M.C. and Buiatti, M. (1997). A physiological and molecular analysis of the genus Nicotiana. Molecular Phylogenetics and Evolution, 7:62–70.

    Article  CAS  Google Scholar 

  59. Goodspeed, Th.H., (1954). The genus Nicotiana, Walthum, Mass. USA.

    Google Scholar 

  60. Näf, U. (1958). Studies on tumor formation in Nicotiana hybrids: I the classification of the parents into two etiologically significant groups. Growth. 22: 167–180.

    Google Scholar 

  61. Gutell, R.A., Power, G.H., Hertz, G.H., Putz, E.J. and Stormo, G.D. (1992). Identifying constraints on the higher order structure of RNA: continued development and application of comparative sequence analysis method. Nucleic Acids Research, 20: 5785–5795.

    Article  CAS  Google Scholar 

  62. Taylor, P.W.J., Geijskes, J.R., Ko, H.L., Froser, TA., Henry, R.J. and Birch, R.G. (1995). Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theoretical and Applied Genetics, 90: 1169–1173.

    Article  CAS  Google Scholar 

  63. Cuzzoni, E., Chiara Giordani, O. Stampacchia, A. Bolchi, A. Malcerschi, S. Ortonello, L. Ferretti and Sala, F. (1995). Presence of a chloroplast DNA sequence in an autonomous circular DNA molecule in cultured rice cells (Oryza sauva L.) Plant Cell Physiology 36: 717–725.

    CAS  Google Scholar 

  64. Bodnar, J.W. and Ward, D.C (1987). Highly recurring sequence elements identified in eukaryotic DNA’s by computer analysis are often homologous to regulatory sequences or protein binding sites. Nucleic Acids Research, 15: 1835–1841.

    Article  CAS  Google Scholar 

  65. Karp, A., Seberg, O. and Buiatti, M. (1996). Molecular techniques in the assessment of botanical diversity. Annals of Botany, 78; 143–149.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Chapman & Hall

About this chapter

Cite this chapter

Buiatti, M., Bogani, P. (1998). Exploiting Genome Plasticity for the Detection of Hypervariable Sequences. In: Karp, A., Isaac, P.G., Ingram, D.S. (eds) Molecular Tools for Screening Biodiversity. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0019-6_83

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0019-6_83

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6496-5

  • Online ISBN: 978-94-009-0019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics