Skip to main content
  • 1461 Accesses

Abstract

Alignment (pairwise and multiple) is central in the comparison of biological sequences. Some of the purposes in aligning sequences are:

  • Reconstructing molecular evolution.

  • Matching of functionally equivalent regions.

  • Matching of homologous nucleotides/amino acids.

  • Definition of patterns the sequences must contain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Levensthein, V.I. (1996) Binary codes capable of correcting insertions, and reversals. Cybernetics and Control Theory 10: 707–710.

    Google Scholar 

  2. Needleman, S.B. and CD. Wunsch (1970). “A general method applicable to the search for similarities in the amino acid sequences of two proteins” Journal of Molecular Biology. 48: 443–453.

    Article  CAS  Google Scholar 

  3. Gotoh, O. (1982). “An improved algorithm for matching biological sequences.” Journal Molecular Biology. 162: 705–708.

    Article  CAS  Google Scholar 

  4. Sellers, P. (1980). “The theory and computation of evolutionary distances: Pattern recognition.” Journal Algorithms 1: 359–373.

    Article  Google Scholar 

  5. Smith, T.F. and M.S. Waterman (1981). “The identification of common molecular subsequences.” Journal of Molecular Biology. 147: 195–197.

    Article  CAS  Google Scholar 

  6. Sankoff, D. a. R.J.C. (1975). “Simultaneous Comparison of Three or More Sequences Related by a Tree.” pp 253–264.

    Google Scholar 

  7. Feng, D.-F. and R.F. Doolittle (1987). “Progressive sequence alignment as prerequisite to correct phylogenetic trees.” Journal of Molecular Evolution 25: 351–360.

    Article  CAS  Google Scholar 

  8. Thompson, J.D., Higgins, D.G. and Gibson,T.J. (1994): CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalities and weight matrix choice. Nucleic Acids Research 22.4673–4680.

    Article  CAS  Google Scholar 

  9. Hein, J.J. (1990). “Unified approach to alignment and phytogenies.” Methods in Enzymology. 183: 627–645.

    Article  Google Scholar 

  10. Felsenstein, J. (1981). “Evolutionary Trees from DNA Sequences: A maximum likelihood approach.” Journal of Molecular Evolution. 17: 368–376.

    Article  CAS  Google Scholar 

  11. Felsenstein, J. (1985). “Confidence limits on phytogenies: an approach using the bootstrap.” Evolution 39: 783–791.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Chapman & Hall

About this chapter

Cite this chapter

Hein, J. (1998). Multiple Alignment. In: Karp, A., Isaac, P.G., Ingram, D.S. (eds) Molecular Tools for Screening Biodiversity. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0019-6_61

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0019-6_61

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6496-5

  • Online ISBN: 978-94-009-0019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics