Skip to main content

A Network Systems Approach to Identify Functional Epigenetic Drivers in Cancer

  • Chapter
  • First Online:
Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases

Part of the book series: Translational Bioinformatics ((TRBIO,volume 4))

Abstract

Aberrant epigenetic regulation is a key cancer hallmark. Epigenetic changes observed in pre-neoplastic lesions and cancer also provides a promising avenue for the discovery of novel biomarkers for early detection, diagnosis and prognosis, as well as offering novel therapeutic opportunities. However, the biological interpretation and functional significance of the epigenetic changes in cancer is still unclear. This chapter describes an emerging computational systems framework for elucidating the observed epigenetic deregulation in cancer and other complex diseases. As we shall see, the novel graph-theoretical approach presented here provides a powerful framework for the identification of epigenetic biomarkers associated with common phenotypes. Moreover, it provides a convenient platform in which to perform integrative multi-dimensional analysis, allowing functional epigenetic modules driving disease to be identified. We illustrate the computational method with applications to ageing and the early detection of endometrial cancer. The methods and data presented here provide a concrete example of systems-medicine: the application of a systems-approach to identify a biomarker with great potential for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. Lancet. 2005;366(9484):491–505.

    Article  PubMed  Google Scholar 

  • Amatu A, Sartore-Bianchi A, Moutinho C, Belotti A, Bencardino K, Chirico G, Cassingena A, Rusconi F, Esposito A, Nichelatti M, Esteller M, Siena S. Promoter CpG island hypermethylation of the DNA repair enzyme mgmt predicts clinical response to dacarbazine in a phase ii study for metastatic colorectal cancer. Clin Cancer Res. 2013;19(8):2265–72.

    Article  PubMed  CAS  Google Scholar 

  • Bagchi IC, Li Q, Cheon YP, Mantena SR, Kannan A, Bagchi MK. Use of the progesterone receptor antagonist ru 486 to identify novel progesterone receptor-regulated pathways in implantation. Semin Reprod Med. 2005;23(1):38–45.

    Article  PubMed  CAS  Google Scholar 

  • Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6(2):107–16.

    Article  PubMed  CAS  Google Scholar 

  • Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci USA. 2010;107(12):5465–70.

    Article  PubMed  CAS  Google Scholar 

  • Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell. 2013;12(4):413–25.

    Article  PubMed  CAS  Google Scholar 

  • Beisser D, Klau GW, Dandekar T, Mller T, Dittrich MT. Bionet: an r-package for the functional analysis of biological networks. Bioinformatics. 2010;26(8):1129–30.

    Article  PubMed  CAS  Google Scholar 

  • Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA, Van Den Berg D, Laird PW. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet. 2011;44(1):40–6.

    Article  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj N, Lu H. Correlation between gene expression profiles and protein–protein interactions within and across genomes. Bioinformatics. 2005;21(11):2730–8.

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj N, Lu H. Co-expression among constituents of a motif in the protein–protein interaction network. J Bioinform Comput Biol. 2009;7(1):1–17.

    Article  PubMed  CAS  Google Scholar 

  • Bibikova M, Fan JB. Genome-wide DNA methylation profiling. Wiley Interdiscip Rev Syst Biol Med. 2010;2(2):210–23.

    Article  PubMed  CAS  Google Scholar 

  • Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R, Gunderson KL. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics. 2009;1(1):177–200.

    Article  PubMed  CAS  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317(5839):807–10.

    Article  PubMed  CAS  Google Scholar 

  • Brack AS, Rando TA. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 2007;3(3):226–37.

    Article  PubMed  CAS  Google Scholar 

  • Brawley OW. Avoidable cancer deaths globally. CA Cancer J Clin. 2011;61(2):67–8.

    Article  PubMed  Google Scholar 

  • Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A, Swerdlow A, Thorne H, Riboli E, Vineis P, Dorronsoro M, Clavel-Chapelon F, Panico S, Onland-Moret NC, Trichopoulos D, Kaaks R, Khaw KT, Brown R, Flanagan JM. Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res. 2012;72(9):2304–13.

    Article  PubMed  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Google Scholar 

  • Chen J, Chen L, Shen B. Identification of network biomarkers for cancer diagnosis. In: Wang X, editor. Bioinformatics of human proteomics, vol. Translational Bioinformatics vol. 3. Netherlands: Springer; 2013. p. 257–75.

    Chapter  Google Scholar 

  • Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007;3:140.

    Article  PubMed  Google Scholar 

  • Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E 2004;70(6):066111. doi:10.1103/PhysRevE.70.066111.

    Google Scholar 

  • Dassen H, Punyadeera C, Kamps R, Klomp J, Dunselman G, Dijcks F, de Goeij A, Ederveen A, Groothuis P. Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007;64(7–8):1009–32.

    Article  PubMed  CAS  Google Scholar 

  • Day RS, McDade KK, Chandran UR, Lisovich A, Conrads TP, Hood BL, Kolli VS, Kirchner D, Litzi T, Maxwell GL. Identifier mapping performance for integrating transcriptomics and proteomics experimental results. BMC Bioinform. 2011;12:213.

    Article  Google Scholar 

  • Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.

    Article  PubMed  CAS  Google Scholar 

  • deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grtzmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R, Sledziewski AZ, Lofton-Day C. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem. 2009;55(7):1337–46.

    Google Scholar 

  • Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Mller T. Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics. 2008;24(13):i223–31.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci. 2007;1100:60–74.

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007;23(8):413–8.

    Article  PubMed  CAS  Google Scholar 

  • Gruetzmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, Saeger HD, Miehlke S, Stolz T, Model F, Roblick UJ, Bruch HP, Koch R, Liebenberg V, Devos T, Song X, Day RH, Sledziewski AZ, Lofton-Day C. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS ONE. 2008;3(11):e3759.

    Article  Google Scholar 

  • Hanahan D. The hallmarks of cancer revisited. Ann Oncol. 2012;23(9).

    Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  PubMed  CAS  Google Scholar 

  • Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.

    Article  PubMed  CAS  Google Scholar 

  • Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, Wen B, Wu H, Liu Y, Diep D, Briem E, Zhang K, Irizarry RA, Feinberg AP. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768–75.

    Article  PubMed  CAS  Google Scholar 

  • Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13(10):679–92.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP. The human colon cancer methylome shows similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.

    Article  PubMed  CAS  Google Scholar 

  • Issa JP. Epigenetic variation and cellular Darwinism. Nat Genet. 2011;43(8):724–6.

    Article  PubMed  CAS  Google Scholar 

  • Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001;61(9):3573–7.

    PubMed  CAS  Google Scholar 

  • Jones A, Teschendorff AE, Li Q, Hayward JD, Kannan A, Mould T, West J, Zikan M, Cibula D, Fiegl H, Lee SH, Wik E, Hadwin R, Arora R, Lemech C, Turunen H, Pakarinen P, Jacobs IJ, Salvesen HB, Bagchi MK, Bagchi IC, Widschwendter M. Role of DNA methylation and epigenetic silencing of hand 2 in endometrial cancer development. PLoS Med. 2013;10(11): e1001551. doi:10.1371/journal.pmed.1001551.

  • Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    Article  PubMed  CAS  Google Scholar 

  • Kurita T, Young P, Brody JR, Lydon JP, O’Malley BW, Cunha GR. Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis. Endocrinology. 1998;139(11):4708–13.

    Article  PubMed  CAS  Google Scholar 

  • Lechner M, Fenton T, West J, Wilson G, Feber A, Henderson S, Thirlwell C, Di-bra HK, Jay A, Butcher L, Chakravarthy AR, Gratrix F, Patel N, Vaz F, O’Flynn P, Kalavrezos N, Teschendorff AE, Boshoff C, Beck S. Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma. Genome Med. 2013;5(2):15.

    Article  PubMed  CAS  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Cheva-lier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA. Control of developmental regulators by polycomb in human embryonic stem cells. Cell. 2006;125(2):301–13.

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Kannan A, DeMayo FJ, Lydon JP, Cooke PS, Yamagishi H, Srivastava D, Bagchi MK, Bagchi IC. The antiproliferative action of progesterone in uterine epithelium is mediated by hand2. Science. 2011;331(6019):912–6.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78–85.

    Article  PubMed  CAS  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.

    Article  PubMed  CAS  Google Scholar 

  • Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, Song X, Lesche R, Liebenberg V, Ebert M, Molnar B, Grtzmann R, Pilarsky C, Sledziewski A. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54(2):414–23.

    Article  PubMed  CAS  Google Scholar 

  • Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 2010;20(3):332–40.

    Article  PubMed  CAS  Google Scholar 

  • Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: aging gracefully as a protectionist? Pharmacol Ther. 2008;118(1):58–81.

    Article  PubMed  CAS  Google Scholar 

  • Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci USA. 2006;103(23):8577–82.

    Article  PubMed  CAS  Google Scholar 

  • Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39(2):237–42.

    Article  PubMed  CAS  Google Scholar 

  • Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, Mc-Cann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20(4):434–9.

    Article  PubMed  CAS  Google Scholar 

  • Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E. 2006;74:016110. doi:10.1103/PhysRevE.74.016110.

    Google Scholar 

  • Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6(6):692–702.

    Article  PubMed  CAS  Google Scholar 

  • Sawyers CL. The cancer biomarker problem. Nature. 2008;452(7187):548–52.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H. Polycombmediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet. 2007;39(2):232–6.

    Article  PubMed  CAS  Google Scholar 

  • Schouten LJ, Goldbohm RA, van den Brandt PA. Anthropometry, physical activity, and endometrial cancer risk: results from the Netherlands cohort study. J Natl Cancer Inst. 2004;96(21):1635–8.

    Article  PubMed  Google Scholar 

  • Selamat SA, Chung BS, Girard L, Zhang W, Zhang Y, Campan M, Siegmund KD, Koss MN, Hagen JA, Lam WL, Lam S, Gazdar AF, Laird-Offringa IA. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res. 2012;22(7):1197–211.

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153(1):38–55.

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3(Article3).

    Google Scholar 

  • Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet. 1997;16(2):154–60.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

    Google Scholar 

  • Suzuki H, Toyota M, Kondo Y, Shinomura Y. Inflammation-related aberrant patterns of DNA methylation: detection and role in epigenetic deregulation of cancer cell transcriptome. Methods Mol Biol. 2009;512:55–69.

    Article  PubMed  CAS  Google Scholar 

  • Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Paw-son T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009;27(2):199–204.

    Article  PubMed  CAS  Google Scholar 

  • Teschendorff AE, Jones A, Fiegl H, Sargent A, Zhuang JJ, Kitchener HC, Wid-schwendter M. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation. Genome Med. 2012;4(3):24.

    Article  PubMed  CAS  Google Scholar 

  • Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, Apostolidou S, Jones A, Lechner M, Beck S, Jacobs IJ, Widschwendter M. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS ONE. 2009;4(12):e8274.

    Article  PubMed  Google Scholar 

  • Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 2010;20(4):440–6.

    Article  PubMed  CAS  Google Scholar 

  • Teschendorff AE, Widschwendter M. Differential variability improves the identification of cancer risk markers in DNA methylation studies profiling precursor cancer lesions. Bioinformatics. 2012;28(11):1487–94.

    Article  PubMed  CAS  Google Scholar 

  • Ulitsky I, Krishnamurthy A, Karp RM, Shamir R. DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS One. 2010;5(10):e13367.

    Article  PubMed  Google Scholar 

  • Ulitsky I, Shamir R. Identification of functional modules using network topology and high-throughput data. BMC Syst Biol. 2007;1:8.

    Article  PubMed  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  PubMed  CAS  Google Scholar 

  • Wen B, Wu H, Loh YH, Briem E, Daley GQ, Feinberg AP. Euchromatin islands in large heterochromatin domains are enriched for CTCF binding and differentially DNA-methylated regions. BMC Genomics. 2012;13:566.

    Article  PubMed  CAS  Google Scholar 

  • West J, Beck S, Wang X, Teschendorff AE. An integrative network algorithm identifies age-associated differential methylation interactome hotspots targeting stem-cell differentiation pathways. Sci Rep. 2013;3:1630.

    Article  PubMed  CAS  Google Scholar 

  • West J, Bianconi G, Severini S, Teschendorff AE. Differential network entropy reveals cancer system hallmarks. Sci Rep. 2012;2:802.

    Article  PubMed  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisen-berger DJ, Campan M, Young J, Jacobs I, Laird PW. Epigenetic stem cell signature in cancer. Nat Genet. 2007;39(2):157–8.

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Su S, Barnes VA, De Miguel C, Pollock J, Ownby D, Shi H, Zhu H, Snieder H, Wang X. A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics. 2013;8(5).

    Google Scholar 

  • Xu Z, Bolick SC, Deroo LA, Weinberg CR, Sandler DP, Taylor JA. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst. 2013.

    Google Scholar 

  • Yang S, Thiel KW, Leslie KK. Progesterone: the ultimate endometrial tumor suppressor. Trends Endocrinol Metab. 2011;22(4):145–52.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang J, Jones A, Lee SH, Ng E, Fiegl H, Zikan M, Cibula D, Sargent A, Salvesen HB, Jacobs IJ, Kitchener HC, Teschendorff AE, Widschwendter M. The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women’s cancer. PLoS Genet. 2012;8(2):e1002517.

    Google Scholar 

Download references

Acknowledgments

AET was supported by a Heller Research Fellowship. The authors wish to thank everyone involved in the endometrial cancer project, specially Allison Jones and Helga Salvesen for collaborative work on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Teschendorff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Teschendorff, A.E., Widschwendter, M. (2013). A Network Systems Approach to Identify Functional Epigenetic Drivers in Cancer. In: Shen, B. (eds) Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases. Translational Bioinformatics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7975-4_7

Download citation

Publish with us

Policies and ethics