Skip to main content

MicroRNAs as Brain Injury Biomarker

  • Living reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

MicroRNAs (miRNAs) are small, noncoding endogenous RNA regulatory molecules, which modulate gene expression either by mRNA degradation or translation suppression. MiRNAs in serum are resistant to repeated freeze thaw, enzymatic degradation and can survive extreme pH conditions. Due to these properties, miRNAs have the advantage over protein-based biomarkers and have recently emerged as novel biomarkers for many diseases and disorders. Worldwide, brain injuries caused by traumatic brain injury (TBI), cerebral ischemia, and stroke are the leading causes of death and disability. TBI is classified as mild, moderate, or severe depending on the severity and the cause of injury to the brain. Cerebral ischemia can be further classified as global or focal. Stroke is caused by obstruction of blood flow in brain vessels and its disruption leads to hemorrhage. Mild brain injuries such as mild TBI and mild ischemic insults can often go undiagnosed and untreated due to the lack of immediate visible symptoms. Current diagnostic techniques including imaging are not capable of detecting low-level trauma to the brain. Recent studies on unique changes in expression of miRNAs in serum and brain samples after TBI or stroke show great promise of developing them as noninvasive test for brain injury. In this chapter, the recent progress of miRNAs in brain injuries has been reviewed especially for their utility as biomarker. The various methods that are currently being followed for identifying the altered expression of miRNAs in brain injuries and their analysis has also been discussed. In addition to the diagnostic and prognostic biomarkers, the brain injury-altered miRNAs have the potential to be used in therapeutics and are discussed with special emphasis on TBI and cerebral ischemia.

Authors Disclosure Statement

The opinions expressed here are those of the authors and should not be construed as official or reflecting the views of the Uniformed Services University of Health Sciences, Bethesda, Maryland, and the Birla Institute of Technology and Science, Pilani, Rajasthan, India. No competing financial interests exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ago2:

Argonaut2

AMPAR:

α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor

AUC:

Area Under the Curve

BACE-1:

Beta-Site APP-Cleaving Enzyme -1

BBB:

Blood-Brain Barrier

BIP:

Binding Immunoglobulin Protein

BOP:

Blast Overpressure

CCI:

Controlled Cortical Impact

cDNA:

Complimentary DNA

CNS:

Central Nervous System

CSF:

Cerebrospinal Fluid

CSF-MP:

CSF-Microparticle

CT:

Computed Tomography

DIANA:

DNA Intelligence Analysis

DNA:

Deoxyribonucleic Acid

DTI:

Diffusion Tensor Imaging

FDG-PET:

Fluorodeoxyglucose Positron Emission Tomography

FGFR:

Fibroblast Growth Factor Receptor

fMRI:

Functional Magnetic Resonance Imaging

GCS:

Glasgow Coma Scale

GDP:

Gross Domestic Product

GFAP:

Glial Fibrillary Acidic Protein

GO:

Gene Ontology

GRN:

Granulin

GRP78:

Glucose-Regulated Protein, 78 kDa

GSEA:

Gene Set Enrichment Analysis

HSP:

Heat Shock Protein

ICV:

Intracerebroventricular

IPA:

Ingenuity Pathway Analysis

LNA:

Locked Nucleic Acid

LOWESS:

Locally Weighted Regression

MAMI:

MetA Mir: Target Interference

MCAO:

Middle Cerebral Artery Occlusion

MGB:

Minor Groove Binding

miRNA:

MicroRNA

MRI:

Magnetic Resonance Imaging

mTBI:

Mild TBI

NGS:

Next-Generation Sequencing

NMDA:

N-Methyl-d-Aspartate

NR2B:

N-Methyl d-Aspartate Receptor Subtype 2B

NSC:

Neural Stem Cells

NTERA:

Neuronally Committed Human Teratocarcinoma Cell Line

PBMC:

Peripheral Blood Mononuclear Cells

PTA:

Posttraumatic Amnesia

RIN:

RNA Integrity Number

RISC:

RNA-Induced Silencing Complex

RNA:

Ribonucleic Acid

RNA-seq:

Deep Sequencing of Small RNA Libraries

ROC:

Receiver Operating Characteristic

RT-qPCR:

Real-Time Quantitative Polymerase Chain Reaction

snRNA:

Small Nucleolar RNA

SPECT:

Single-Photon Emission Computed Tomography

TBI:

Traumatic Brain Injury

Tm:

Melting Temperature

TRBP:

TAR RNA-Binding Protein

UCH-L1:

Ubiquitin Carboxyl-Terminal Esterase L1

WHO:

World Health Organization

References

  • Allegra A, Alonci A, Campo S, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41:1897–912.

    CAS  PubMed  Google Scholar 

  • Balakathiresan N, Bhomia M, Chandran R, et al. MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J Neurotrauma. 2012;29:1379–87.

    PubMed Central  PubMed  Google Scholar 

  • Belanger HG, Vanderploeg RD, Curtiss G, Warden DL. Recent neuroimaging techniques in mild traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2007;19:5–20.

    PubMed  Google Scholar 

  • Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40:10937–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg. 2005;103(1 Suppl):61–8.

    PubMed  Google Scholar 

  • Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol. 2013;9:328–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhomia M, Balakathiresan N, Sharma A, et al. Analysis of microRNAs induced by Venezuelan equine encephalitis virus infection in mouse brain. Biochem Biophys Res Commun. 2010;395:11–6.

    CAS  PubMed  Google Scholar 

  • Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 2009;284:1971–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bredy TW, Lin Q, Wei W, et al. MicroRNA regulation of neural plasticity and memory. Neurobiol Learn Mem. 2011;96:89–94.

    CAS  PubMed  Google Scholar 

  • Brenner LA. Neuropsychological and neuroimaging findings in traumatic brain injury and post-traumatic stress disorder. Dialogues Clin Neurosci. 2011;13:311–23.

    PubMed Central  PubMed  Google Scholar 

  • Brophy GM, Mondello S, Papa L, et al. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma. 2011;28:861–70.

    PubMed Central  PubMed  Google Scholar 

  • Burgos KL, Javaherian A, Bomprezzi R, et al. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA (New York, NY). 2013;19:712–22.

    CAS  Google Scholar 

  • CDC. Injury prevention and control: traumatic brain injury. http://www.cdc.gov/traumaticbraininjury/statistics.html#3. Accessed 30 June 2013.

  • Cenik B, Sephton CF, Kutluk CB, et al. Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J Biol Chem. 2012;287:32298–306.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chandrasekar V, Dreyer JL. Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2011;36:1149–64.

    CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.

    PubMed Central  PubMed  Google Scholar 

  • Coronado VG, Xu L, Basavaraju SV, et al. Surveillance for traumatic brain injury-related deaths-United States, 1997–2007. MMWR Surveill Summ (Washington, DC: 2002). 2011; 60:1–32.

    Google Scholar 

  • De Guire V, Robitaille R, Tetreault N, et al. Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges. Clin Biochem. 2013;46:846–60.

    PubMed  Google Scholar 

  • Dharap A, Vemuganti R. Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. J Neurochem. 2010;113:1685–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dharap A, Bowen K, Place R, et al. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2009;29:675–87.

    CAS  Google Scholar 

  • Doeppner TR, Doehring M, Bretschneider E, et al. MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol. 2013;126:251–65.

    CAS  PubMed  Google Scholar 

  • Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Curr Biol: CB. 2010;20:R858–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–6.

    CAS  PubMed  Google Scholar 

  • Edbauer D, Neilson JR, Foster KA, et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 2010;65:373–84.

    CAS  PubMed  Google Scholar 

  • Fang W, Lv P, Geng X, et al. Penetration of verapamil across blood brain barrier following cerebral ischemia depending on both paracellular pathway and P-glycoprotein transportation. Neurochem Int. 2013;62:23–30.

    CAS  PubMed  Google Scholar 

  • Forero DA, van der Ven K, Callaerts P, Del-Favero J. miRNA genes and the brain: implications for psychiatric disorders. Hum Mutat. 2010;31:1195–204.

    CAS  PubMed  Google Scholar 

  • Gan CS, Wang CW, Tan KS. Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res: GMR. 2012;11:147–52.

    CAS  PubMed  Google Scholar 

  • Gao J, Wang WY, Mao YW, et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466:1105–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Altes A, Suelves JM, Barberia E. Cost savings associated with 10 years of road safety policies in Catalonia, Spain. Bull World Health Organ. 2013;91:28–35.

    PubMed Central  PubMed  Google Scholar 

  • Giacoppo S, Bramanti P, Barresi M, et al. Predictive biomarkers of recovery in traumatic brain injury. Neurocrit Care. 2012;16:470–7.

    CAS  PubMed  Google Scholar 

  • Harraz MM, Eacker SM, Wang X, et al. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A. 2012;109:18962–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu G, Drescher KM, Chen XM. Exosomal miRNAs: Biological properties and therapeutic potential. Front Genet. 2012a;3:56.

    Google Scholar 

  • Hu Z, Yu D, Almeida-Suhett C, et al. Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. PLoS One. 2012b;7:e39357.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hunsberger JG, Fessler EB, Wang Z, et al. Post-insult valproic acid-regulated microRNAs: potential targets for cerebral ischemia. Am J Transl Res. 2012;4:316–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacob NK, Cooley JV, Yee TN, et al. Identification of sensitive serum microRNA biomarkers for radiation biodosimetry. PLoS One. 2013;8:e57603.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke J Cereb Circ. 2008;39:959–66.

    CAS  Google Scholar 

  • Judge AD, Sood V, Shaw JR, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23:457–62.

    CAS  PubMed  Google Scholar 

  • Junn E, Mouradian MM. MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther. 2012;133:142–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kast J. A quick reality check for microRNA target prediction. Expert Rev Proteomics. 2011;8:149–52.

    CAS  PubMed  Google Scholar 

  • Kaur P, Armugam A, Jeyaseelan K. MicroRNAs in neurotoxicity. J Toxicol. 2012;2012:870150.

    PubMed Central  PubMed  Google Scholar 

  • Konopka W, Kiryk A, Novak M, et al. MicroRNA loss enhances learning and memory in mice. J Neurosci: Off J Soc Neurosci. 2010;30:14835–42.

    CAS  Google Scholar 

  • Konopka W, Schutz G, Kaczmarek L. The microRNA contribution to learning and memory. Neuroscientist: Rev J Bringing Neurobiol Neurol Psychiatry. 2011;17:468–74.

    CAS  Google Scholar 

  • Kosik KS, Krichevsky AM. The elegance of the microRNAs: a neuronal perspective. Neuron. 2005;47:779–82.

    CAS  PubMed  Google Scholar 

  • Koutsis G, Siasos G, Spengos K. The emerging role of microRNA in stroke. Curr Top Med Chem. 2013;13:1573–88.

    CAS  PubMed  Google Scholar 

  • Kramer MF. Stem-loop RT-qPCR for miRNAs. In: Ausubel FM et al., editors. Current protocols in molecular biology. 2011; Chapter 15: Unit 15 10, John Wiley & Sons Inc, New York.

    Google Scholar 

  • Krichevsky AM, King KS, Donahue CP, et al. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA (New York, NY). 2003;9:1274–81.

    CAS  Google Scholar 

  • Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55:1977–83.

    CAS  PubMed  Google Scholar 

  • Lee ST, Chu K, Jung KH, et al. MicroRNAs induced during ischemic preconditioning. Stroke J Cereb Circ. 2010;41:1646–51.

    Google Scholar 

  • Lei P, Li Y, Chen X, et al. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res. 2009;1284:191–201.

    CAS  PubMed  Google Scholar 

  • Liu NK, Xu XM. MicroRNA in central nervous system trauma and degenerative disorders. Physiol Genomics. 2011;43:571–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu DZ, Tian Y, Ander BP, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010a;30:92–101.

    Google Scholar 

  • Liu MC, Akinyi L, Scharf D, et al. Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci. 2010b;31:722–32.

    PubMed Central  PubMed  Google Scholar 

  • Liu C, Peng Z, Zhang N, et al. Identification of differentially expressed microRNAs and their PKC-isoform specific gene network prediction during hypoxic pre-conditioning and focal cerebral ischemia of mice. J Neurochem. 2012;120:830–41.

    CAS  PubMed  Google Scholar 

  • Lou YL, Guo F, Liu F, et al. miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 2012;370:45–51.

    CAS  PubMed  Google Scholar 

  • Martens LH, Zhang J, Barmada SJ, et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest. 2012;122:3955–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matthews SC, Strigo IA, Simmons AN, et al. A multimodal imaging study in U.S. veterans of operations Iraqi and enduring freedom with and without major depression after blast-related concussion. Neuroimage. 2011;54 Suppl 1:S69–75.

    PubMed  Google Scholar 

  • Mayr M, Zampetaki A, Willeit P, et al. MicroRNAs within the continuum of postgenomics biomarker discovery. Arterioscler Thromb Vasc Biol. 2013;33:206–14.

    CAS  PubMed  Google Scholar 

  • McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci. 2011;13:287–300.

    PubMed Central  PubMed  Google Scholar 

  • Min H, Yoon S. Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med. 2010;42:233–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson PT, Baldwin DA, Kloosterman WP, et al. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA (New York, NY). 2006;12:187–91. 8.

    CAS  Google Scholar 

  • Niogi SN, Mukherjee P, Ghajar J, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008;29:967–73.

    CAS  PubMed  Google Scholar 

  • Ouyang YB, Lu Y, Yue S, et al. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis. 2012;45:555–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pandi G, Nakka VP, Dharap A, et al. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One. 2013;8:e58039.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Papa L, Akinyi L, Liu MC, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;38:138–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Papa L, Lewis LM, Falk JL, et al. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med. 2012a;59:471–83.

    PubMed  Google Scholar 

  • Papa L, Lewis LM, Silvestri S, et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg. 2012b;72:1335–44.

    PubMed  Google Scholar 

  • Pasinetti GM, Fivecoat H, Ho L. Personalized medicine in traumatic brain injury. Psychiatr Clin N Am. 2010;33:905–13.

    Google Scholar 

  • Pasinetti GM, Ho L, Dooley C, et al. Select non-coding RNA in blood components provide novel clinically accessible biological surrogates for improved identification of traumatic brain injury in OEF/OIF Veterans. Am J Neurodegener Dis. 2012;1:88–98.

    PubMed Central  PubMed  Google Scholar 

  • Patz S, Trattnig C, Grunbacher G, et al. More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs and proteins. J Neurotrauma. 2013;30:1232–42.

    PubMed  Google Scholar 

  • Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nature reviews. Genetics. 2012;13:358–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Puvanachandra P, Hyder AA. The burden of traumatic brain injury in Asia: a call for research. Pak J Neurol Sci. 2009;4:6.

    Google Scholar 

  • Racioppi F, Eriksson L, Tingvall C, Villaveces A. Preventing road traffic injury: a public health perspective for Europe. Copenhagen: World Health Organization; 2004. World Health Organization Regional Office for Europe.

    Google Scholar 

  • Rajasethupathy P, Fiumara F, Sheridan R, et al. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 2009;63:803–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Redell JB, Liu Y, Dash PK. Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. J Neurosci Res. 2009;87:1435–48.

    CAS  PubMed  Google Scholar 

  • Redell JB, Moore AN, Ward 3rd NH, Hergenroeder GW, Dash PK. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma. 2010;27:2147–56.

    PubMed  Google Scholar 

  • Redell JB, Zhao J, Dash PK. Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J Neurosci Res. 2011;89:212–21.

    CAS  PubMed  Google Scholar 

  • Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics. 2011;43:521–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rong H, Liu TB, Yang KJ, et al. MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res. 2011;45:92–5.

    PubMed  Google Scholar 

  • Satoh M, Tabuchi T, Minami Y, et al. Expression of let-7i is associated with Toll-like receptor 4 signal in coronary artery disease: effect of statins on let-7i and Toll-like receptor 4 signal. Immunobiology. 2012;217:533–9.

    CAS  PubMed  Google Scholar 

  • Schouten M, Aschrafi A, Bielefeld P, et al. microRNAs and the regulation of neuronal plasticity under stress conditions. Neuroscience. 2013;241:188–205.

    CAS  PubMed  Google Scholar 

  • Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One. 2012;7:e32662.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004;5:R13.

    PubMed Central  PubMed  Google Scholar 

  • Shao NY, Hu HY, Yan Z, et al. Comprehensive survey of human brain microRNA by deep sequencing. BMC Genomics. 2010;11:409.

    PubMed Central  PubMed  Google Scholar 

  • Sharma R, Laskowitz DT. Biomarkers in traumatic brain injury. Curr Neurol Neurosci Rep. 2012;12:560–9.

    CAS  PubMed  Google Scholar 

  • Shin C, Nam JW, Farh KK, et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell. 2010;38:789–802.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Somel M, Liu X, Khaitovich P. Human brain evolution: transcripts, metabolites and their regulators. Nature reviews. Neuroscience. 2013;14:112–27.

    CAS  PubMed  Google Scholar 

  • Spadaro PA, Bredy TW. Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Front Genet. 2012;3:132.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun AX, Crabtree GR, Yoo AS. MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol. 2013;25:215–21.

    CAS  PubMed  Google Scholar 

  • Tan KS, Armugam A, Sepramaniam S, et al. Expression profile of MicroRNAs in young stroke patients. PLoS One. 2009;4:e7689.

    PubMed Central  PubMed  Google Scholar 

  • Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.

    CAS  PubMed  Google Scholar 

  • TBICARE. Evidence-based diagnostic and treatment planning solution for traumatic brain injuries. http://www.tbicare.eu/. Accessed 30 June 2013

  • Teasdale G, Jennett B. Assessment and prognosis of coma after head injury. Acta Neurochir. 1976;34:45–55.

    CAS  PubMed  Google Scholar 

  • Thelin EP, Johannesson L, Nelson D, Bellander BM. S100B is an important outcome predictor in traumatic brain injury. J Neurotrauma. 2013;30:519–28.

    PubMed  Google Scholar 

  • Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res. 2011;39:6845–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Truettner JS, Alonso OF, Bramlett HM, Dietrich WD. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2011;31:1897–907.

    CAS  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006;124:1169–81.

    CAS  PubMed  Google Scholar 

  • Vos PE, Jacobs B, Andriessen TM, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75:1786–93.

    CAS  PubMed  Google Scholar 

  • Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 2010;1803:1231–43.

    CAS  PubMed  Google Scholar 

  • Wang Z, Liu Y, Han N, et al. Profiles of oxidative stress-related microRNA and mRNA expression in auditory cells. Brain Res. 2010;1346:14–25.

    CAS  PubMed  Google Scholar 

  • Wang Y, Guo F, Pan C, et al. Effects of low temperatures on proliferation-related signaling pathways in the hippocampus after traumatic brain injury. Exp Biol Med (Maywood). 2012;237:1424–32.

    CAS  Google Scholar 

  • Wang Y, Wang Y, Yang GY. MicroRNAs in cerebral ischemia. Stroke Res Treat. 2013;2013:1–6.

    Google Scholar 

  • Weng H, Shen C, Hirokawa G, et al. Plasma miR-124 as a biomarker for cerebral infarction. Biomed Res (Tokyo, Japan). 2011;32:135–41.

    CAS  Google Scholar 

  • Wiesmann M, Steinmeier E, Magerkurth O, et al. Outcome prediction in traumatic brain injury: comparison of neurological status, CT findings, and blood levels of S100B and GFAP. Acta Neurol Scand. 2010;121:178–85.

    CAS  PubMed  Google Scholar 

  • Wilde EA, McCauley SR, Hunter JV, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70:948–55.

    CAS  PubMed  Google Scholar 

  • Witkos TM, Koscianska E, Krzyzosiak WJ. Practical aspects of microRNA target prediction. Curr Mol Med. 2011;11:93–109.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu TC, Wilde EA, Bigler ED, et al. Evaluating the relationship between memory functioning and cingulum bundles in acute mild traumatic brain injury using diffusion tensor imaging. J Neurotrauma. 2010;27:303–7.

    PubMed Central  PubMed  Google Scholar 

  • Yuh EL, Cooper SR, Ferguson AR, Manley GT. Quantitative CT improves outcome prediction in acute traumatic brain injury. J Neurotrauma. 2012;29:735–46.

    PubMed Central  PubMed  Google Scholar 

  • Zeng L, Liu J, Wang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci. 2011;3:1265–72. Elite edition.

    Google Scholar 

  • Zhai F, Zhang X, Guan Y, et al. Expression profiles of microRNAs after focal cerebral ischemia/reperfusion injury in rats. Neural Regen Res. 2012;7:917–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng HW, Wang YL, Lin JX, et al. Circulating MicroRNAs as potential risk biomarkers for hematoma enlargement after intracerebral hemorrhage. CNS Neurosci Ther. 2012;18:1003–11.

    CAS  PubMed  Google Scholar 

  • Zhou X, Zhu Q, Eicken C, et al. MicroRNA profiling using microParaflo microfluidic array technology. Methods Mol Biol (Clifton, NJ). 2012;822:153–82.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Defense Medical Research and Development Program to Dr. Radha K. Mahaeshwari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha K. Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science Business Media Dordrecht (outside the USA)

About this entry

Cite this entry

Balakathiresan, N.S., Bhomia, M., Gupta, P., Chandran, R., Sharma, A., Maheshwari, R.K. (2014). MicroRNAs as Brain Injury Biomarker. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7740-8_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7740-8_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7740-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics