Skip to main content

Use of Radiolabeled Compounds and Imaging as Cardiac Biomarkers

  • Living reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications
  • 163 Accesses

Abstract

Specific molecules that are labelled with radioactive isotopes can be injected in very small quantities into a living organism for in vivo, minimally invasive imaging without evoking a physiologic response. These molecules are aptly referred to as tracers, and images of their biodistribution provide information on the presence of disease and insight into biochemical processes. A wide range of tracers and applications have been developed for cardiac indications, and ongoing research is expending the field. This chapter summarizes current applications and the state of the art of radiolabeled compounds in imaging of cardiac biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CPT:

Cold pressor test

ECG:

Electrocardiogram

EDV:

End diastolic volume

EF:

Ejection fraction

ESV:

End systolic volume

LV:

Left ventricle

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

MPI:

Myocardial perfusion imaging

MUGA:

Multiple-gated acquisition

PET:

Positron emission tomography

ROI:

Region of interest

RV:

Right ventricle

SPECT:

Single-photon emission computed tomography

SUV:

Standard uptake value

TAC:

Time-activity curve (of tracer concentration)

VEGF:

Vascular endothelial growth factor

References

  • Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346(24):1845–53.

    Article  PubMed  Google Scholar 

  • Abraham A, Nichol G, Williams KA, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med. 2010;51(4):567–74.

    Article  PubMed  Google Scholar 

  • Agostini D, Verberne HJ, Burchert W, et al. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging. 2008;35(3):535–46.

    Article  PubMed  Google Scholar 

  • Allman KC, Shaw LJ, Hachamovitch R, et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151–8.

    Article  PubMed  Google Scholar 

  • Arauz A, Hoyos L, Zenteno M, et al. Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg. 2007;109(5):409–12.

    Article  PubMed  Google Scholar 

  • Arora R, Ferrick KJ, Nakata T, et al. I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol. 2003;10(2):121–31.

    Article  PubMed  Google Scholar 

  • Bateman TM, Heller GV, McGhie AI, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13:24–33.

    Article  PubMed  Google Scholar 

  • Beanlands RS, Nichol G, Huszti E, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50(20):2002–12.

    Article  PubMed  Google Scholar 

  • Becquerel H. Sur les radiations invisibles émises par les corps phosphorescents. Compt Rend Acad Sc Paris. 1896;122:501.

    Google Scholar 

  • Birnie DH, Tang AS. The problem of non-response to cardiac resynchronization therapy. Curr Opin Cardiol. 2006;21(1):20–6.

    Article  PubMed  Google Scholar 

  • Boogers MJ, Borleffs CJ, Henneman MM, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55(24):2769–77.

    Article  PubMed  Google Scholar 

  • Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336(18):1276–82.

    Article  CAS  PubMed  Google Scholar 

  • Cazeau S, Leclercq C, Lavergne T, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med. 2001;344(12):873–80.

    Article  CAS  PubMed  Google Scholar 

  • Chemaly ER, Yoneyama R, Frangioni JV, et al. Tracking stem cells in the cardiovascular system. Trends Cardiovasc Med. 2005;15(8):297–302.

    Article  CAS  PubMed  Google Scholar 

  • Cherry S, Dahlbom M. PET: physics, instrumentation and scanners. In: Phelps ME, editor. PET: molecular imaging and its biological applications. New York: Springer; 2004.

    Google Scholar 

  • Cocker MS, Mc Ardle B, Spence JD, et al. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see. J Nucl Cardiol. 2012;19(6):1211–25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen-Solal A, Esanu Y, Logeart D, et al. Cardiac metaiodobenzylguanidine uptake in patients with moderate chronic heart failure: relationship with peak oxygen uptake and prognosis. J Am Coll Cardiol. 1999;33(3):759–66.

    Article  CAS  PubMed  Google Scholar 

  • Curie P, Curie S. Sur une substance nouvelle radio-active contenue dans la pechblende. Compt Rend Acad Sc Paris. 1898;127:175.

    Google Scholar 

  • D’Egidio G, Nichol G, Williams KA, et al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging. 2009;2(9):1060–8.

    Article  PubMed  Google Scholar 

  • Dayanikli F, Grambow D, Muzik O, et al. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation. 1994;90(2):808–17.

    Article  CAS  PubMed  Google Scholar 

  • Di Carli MF, Lipton MJ. Cardiac PET and PET/CT imaging. New York: Springer; 2007.

    Book  Google Scholar 

  • Di Carli MF, Davidson M, Little R, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994;73(8):527–33.

    Article  PubMed  Google Scholar 

  • Dilsizian V, Bacharach SL, Beanlands RS, et al. PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol. 2009;16(4):651.

    Article  Google Scholar 

  • Eitzman D, al-Aouar Z, Kanter HL, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol. 1992;20(3):559–65.

    Article  CAS  PubMed  Google Scholar 

  • El Fakhri G, Sitek A, Guerin B. Simultaneous dual tracer PET using generalized factor analysis of dynamic sequences. IEEE Nucl Sci Symp Conf Rec. 2006;4:2128–30.

    Google Scholar 

  • Gaemperli O, Shalhoub J, Owen DR, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33(15):1902–10.

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Lang L, Guo N, et al. PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2. Eur J Nucl Med Mol Imaging. 2012;39(4):683–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to update the 1997 exercise testing guidelines). Circulation. 2002;106(14):1883–92.

    Article  PubMed  Google Scholar 

  • Gomez A, Bialostozky D, Zajarias A, et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol. 2001;38(4):1137–42.

    Article  CAS  PubMed  Google Scholar 

  • Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res. 1985;57(3):341–53.

    Article  CAS  PubMed  Google Scholar 

  • Grandpierre S, Desandes E, Meneroux B, et al. Arterial foci of F-18 fluorodeoxyglucose are associated with an enhanced risk of subsequent ischemic stroke in cancer patients: a case-control pilot study. Clin Nucl Med. 2011;36(2):85–90.

    Article  PubMed  Google Scholar 

  • Hachamovitch R, Rozanski A, Shaw LJ, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32(8):1012–24.

    Article  PubMed  Google Scholar 

  • Heller G, Mann A, Hendel RC. Nuclear cardiology, technical applications. New York: McGraw-Hill; 2009.

    Google Scholar 

  • Henneman MM, Chen J, Dibbets-Schneider P, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med. 2007;48(7):1104–11.

    Article  PubMed  Google Scholar 

  • Iskandrian AE, Garcia EV. Nuclear cardiac imaging: principles and applications. 4th ed. Oxford: Oxford University Press; 2008.

    Google Scholar 

  • Jaffer FA, Sosnovik DE, Nahrendorf M, et al. Molecular imaging of myocardial infarction. J Mol Cell Cardiol. 2006;41(6):921–33.

    Article  CAS  PubMed  Google Scholar 

  • Johnson NP, Gould KL. Physiological basis for angina and ST-segment change PET-verified thresholds of quantitative stress myocardial perfusion and coronary flow reserve. JACC Cardiovasc Imaging. 2011;4(9):990–8.

    Article  PubMed  Google Scholar 

  • Johnson NP, Gould KL. Integrating noninvasive absolute flow, coronary flow reserve, and ischemic thresholds into a comprehensive map of physiological severity. J Am Coll Cardiol. 2012;5(4):430–40.

    Article  Google Scholar 

  • Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging. 2012;5(2):193–202.

    Article  PubMed  Google Scholar 

  • Jones RH, Floyd RD, Austin EH, et al. The role of radionuclide angiocardiography in the preoperative prediction of pain relief and prolonged survival following coronary artery bypass grafting. Ann Surg. 1983;197(6):743–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383(9918):705–13.

    Google Scholar 

  • Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kini AS, Kim MC, Moreno PR, et al. Comparison of coronary flow reserve and fractional flow reserve in patients with versus without diabetes mellitus and having elective percutaneous coronary intervention and abciximab therapy (from the PREDICT trial). Am J Cardiol. 2008;101(6):796–800.

    Article  PubMed  Google Scholar 

  • Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol. 2010;17(4):555–70.

    Article  PubMed  Google Scholar 

  • Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging). J Am Coll Cardiol. 2003;42(7):1318–33.

    Article  PubMed  Google Scholar 

  • Lee KS, Marwick TH, Cook SA, et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation. 1994;90(6):2687–94.

    Article  CAS  PubMed  Google Scholar 

  • Loong CY, Anagnostopoulos C. Diagnosis of coronary artery disease by radionuclide myocardial perfusion imaging. Heart. 2004;90 Suppl 5:v2–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lortie M, Beanlands RS, Yoshinaga K, et al. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007;34(11):1765–74.

    Article  PubMed  Google Scholar 

  • Lynch F, Sweeney M, O’Regan RG, et al. Hypercapnia-induced contraction in isolated pulmonary arteries is endothelium-dependent. Respir Physiol. 2000;121(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  • Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.

    Article  CAS  PubMed  Google Scholar 

  • Mc Ardle BA, Beanlands RS. Myocardial viability: whom, what, why, which, and how? Can J Cardiol. 2013;29(3):399–402.

    Article  PubMed  Google Scholar 

  • Mc Ardle BA, Dowsley TF, deKemp RA, et al. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(18):1828–37.

    Article  PubMed  Google Scholar 

  • Merlet P, Valette H, Dubois-Rande JL, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med. 1992;33(4):471–7.

    CAS  PubMed  Google Scholar 

  • Moustafa RR, Izquierdo-Garcia D, Fryer TD, et al. Carotid plaque inflammation is associated with cerebral microembolism in patients with recent transient ischemic attack or stroke: a pilot study. Circ Cardiovasc Imaging. 2010;3(5):536–41.

    Article  PubMed  Google Scholar 

  • Nakata T, Nakajima K, Yamashina S, et al. A pooled analysis of multicenter cohort studies of (123)I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 2013;6(7):772–84.

    Article  PubMed  Google Scholar 

  • Naya M, Morita K, Yoshinaga K, et al. Long-term smoking causes more advanced coronary endothelial dysfunction in middle-aged smokers compared to young smokers. Eur J Nucl Med Mol Imaging. 2011;38(3):491–8.

    Article  PubMed  Google Scholar 

  • N. Nipce de St. Victor, Sur une nouvelle action de la lumiere. Comp Rend. 1867;65:505–7.

    Google Scholar 

  • Ogita H, Shimonagata T, Fukunami M, et al. Prognostic significance of cardiac (123)I metaiodobenzylguanidine imaging for mortality and morbidity in patients with chronic heart failure: a prospective study. Heart. 2001;86(6):656–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parkash R, deKemp RA, Ruddy TD, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11(4):440–9.

    Article  CAS  PubMed  Google Scholar 

  • Paulmier B, Duet M, Khayat R, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol. 2008;15(2):209–17.

    Article  PubMed  Google Scholar 

  • Pietila M, Malminiemi K, Ukkonen H, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med. 2001;28(3):373–6.

    Article  CAS  PubMed  Google Scholar 

  • Rohatgi R, Epstein S, Henriquez J, et al. Utility of positron emission tomography in predicting cardiac events and survival in patients with coronary artery disease and severe left ventricular dysfunction. Am J Cardiol. 2001;87(9):1096–9, A1096.

    Article  CAS  PubMed  Google Scholar 

  • Rudd JH, Narula J, Strauss HW, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol. 2010;55(23):2527–35.

    Article  PubMed  Google Scholar 

  • Schafers M, Schober O, Hermann S. Matrix-metalloproteinases as imaging targets for inflammatory activity in atherosclerotic plaques. J Nucl Med. 2010;51(5):663–6.

    Article  PubMed  Google Scholar 

  • Sharir T, Germano G, Kavanagh PB, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation. 1999;100(10):1035–42.

    Article  CAS  PubMed  Google Scholar 

  • Sinusas AJ. Imaging of angiogenesis. J Nucl Cardiol. 2004;11(5):617–33.

    Article  PubMed  Google Scholar 

  • Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

    Article  PubMed  Google Scholar 

  • Stacy MR, Maxfield MW, Sinusas AJ. Targeted molecular imaging of angiogenesis in PET and SPECT: a review. Yale J Biol Med. 2012;85(1):75–86.

    PubMed Central  PubMed  Google Scholar 

  • Tamaki S, Yamada T, Okuyama Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53(5):426–35.

    Article  CAS  PubMed  Google Scholar 

  • Telukuntla KS, Suncion VY, Schulman IH, et al. The advancing field of cell-based therapy: insights and lessons from clinical trials. J Am Heart Assoc. 2013;2(5):e000338.

    Article  PubMed Central  PubMed  Google Scholar 

  • van der Laan AM, Piek JJ, van Royen N. Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol. 2009;6(8):515–23.

    Article  PubMed  Google Scholar 

  • Verberne HJ, Brewster LM, Somsen GA, et al. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29(9):1147–59.

    Article  PubMed  Google Scholar 

  • Welling MM, Duijvestein M, Signore A, et al. In vivo biodistribution of stem cells using molecular nuclear medicine imaging. J Cell Physiol. 2011;226(6):1444–52.

    Article  CAS  PubMed  Google Scholar 

  • Wu JC, Chen IY, Wang Y, et al. Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation. 2004;110(6):685–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada T, Shimonagata T, Fukunami M, et al. Comparison of the prognostic value of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in patients with chronic heart failure: a prospective study. J Am Coll Cardiol. 2003;41(2):231–8.

    Article  PubMed  Google Scholar 

  • Yoshinaga K, Chow BJW, Williams K, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006;48(5):1029–39.

    Article  PubMed  Google Scholar 

  • Yoshinaga K, Manabe O, Tamaki N. Assessment of coronary endothelial function using PET. J Nucl Cardiol. 2011;18(3):486–500.

    Article  PubMed  Google Scholar 

  • Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Thomas DH, Qiao H, et al. In vivo detection of stem cells grafted in infarcted rat myocardium. J Nucl Med. 2005;46(5):816–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ziadi MC, Dekemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58(7):740–8.

    Article  PubMed  Google Scholar 

  • Ziadi M, deKemp R, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19(4):670–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Copyright Her Majesty the Queen in Right of Canada

About this entry

Cite this entry

Klein, R., Pourmoghaddas, A., Mc Ardle, B., Chow, B.J.W. (2014). Use of Radiolabeled Compounds and Imaging as Cardiac Biomarkers. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7740-8_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7740-8_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7740-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics