Skip to main content

Oncogene-Induced Senescence: Role of Mitochondrial Dysfunction

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 2

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 2))

Abstract

Mitochondrial biogenesis is activated in response to different signals and environmental stimuli. Recent data demonstrate an important role for mitochondrial biogenesis in the development of cellular senescence. Normal cellular response to increased energy demand after oncogene stimulation includes the induction of mitochondrial respiration. However, strong and prolonged activation of oxidative phosphorylation leads to oxidative stress, nuclear and mitochondrial DNA damage, mitochondrial dysfunction and senescence. Mutations in tumor suppressors in cooperation with activated oncogenes trigger the shift from mitochondrial respiration to aerobic glycolysis supplying the cells with ATP and metabolic substrates. It has been shown that the reverse shift has antiproliferative effect on cancer cells. As in normal proliferating cells mtDNA concentration is proportional to the oxidative capacity of the cell, the antitumor therapy can be based on the stimulation of mtDNA replication. It is expected that such therapy will stimulate mitochondrial respiration and additional disruption of oxidative phosphorylation will produce more free radicals, DNA damage response and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H, Keating MJ, Huang P (2005) Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J 24:3482–3492

    Article  PubMed  CAS  Google Scholar 

  • Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d’Adda di Fagagna F, Bernard D, Hernando E, Gil J (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    Article  PubMed  CAS  Google Scholar 

  • Ataullakhanov FI, Vitvitsky VM (2002) What determines the intracellular ATP concentration. Biosci Rep 22:501–511

    Article  PubMed  CAS  Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    Article  PubMed  CAS  Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333

    Article  PubMed  CAS  Google Scholar 

  • Barrientos A, Casademont J, Cardellach F, Ardite E, Estivill X, Urbano-Marquez A, Fernandez-Checa JC, Nunes V (1997) Qualitative and quantitative changes in skeletal muscle mtDNA and expression of mitochondrial-encoded genes in the human aging process. Biochem Mol Med 62:165–171

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  PubMed  CAS  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  PubMed  CAS  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  PubMed  CAS  Google Scholar 

  • Brack C, Lithgow G, Osiewacz H, Toussaint O (2000) EMBO WORKSHOP REPORT: Molecular and cellular gerontology Serpiano, Switzerland, September 18–22, 1999. EMBO J 19:1929–1934

    Article  PubMed  CAS  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Article  PubMed  CAS  Google Scholar 

  • deGroof AJC, teLindert MM, van Dommelen MMT, Wu M, Willemse M, Smift AL, Winer M, Oerlemans F, Pluk H, Fransen JAM, Wieringa B (2009) Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer 8:54–67

    Article  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre’ M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA-damage response triggered by DNA hyper-replication. Nature 444:638–642

    Article  PubMed  Google Scholar 

  • Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    PubMed  CAS  Google Scholar 

  • Funes JM, Quintero M, Henderson S, Martinez D, Qureshi U, Westwood C, Clements MO, Bourboulia D, Pedley RB, Moncada S, Boshoff C (2007) Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc Natl Acad Sci U S A 104:6223–6228

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ (2004) Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res 10:6661–6668

    Article  PubMed  CAS  Google Scholar 

  • Greiner EF, Guppy M, Brand K (1994) Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 269:31484–31490

    PubMed  CAS  Google Scholar 

  • Guppy M, Leedman P, Zu X, Russel V (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364:309–315

    PubMed  CAS  Google Scholar 

  • Harman D (1956) A theory based on free radical and radical chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  • Hutter E, Renner K, Pfister G, Stockl P, Jansen-Durr P, Gnaiger E (2004) Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J 380:919–928

    Article  PubMed  CAS  Google Scholar 

  • Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Jagt DLV, Semenza GL, Dang CV (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107:2037–2042

    Article  PubMed  CAS  Google Scholar 

  • Lebedeva MA, Eaton JS, Shadel GS (2009) Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim Biophys Acta 1787:328–334

    Article  PubMed  CAS  Google Scholar 

  • Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX, Ferrans VJ, Howard BH, Finkel T (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Yin PH, Chi CW, Wei YH (2002) Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci 9:517–526

    Article  PubMed  CAS  Google Scholar 

  • Marchenko ND, Wolff S, Erster S, Becker K, Moll UM (2007) Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26:923–934

    Article  PubMed  CAS  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) P53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  PubMed  CAS  Google Scholar 

  • Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G (2009) Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 29:4495–4507

    Article  PubMed  CAS  Google Scholar 

  • Nagino M, Tanaka M, Nishikimi M, Nimura Y, Kubota H, Kanai M, Kato T, Ozawa T (1989) Stimulated rat liver mitochondrial biogenesis after partial hepatectomy. Cancer Res 49:4913–4918

    PubMed  CAS  Google Scholar 

  • Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TBL, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:1138–1151

    Article  CAS  Google Scholar 

  • Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Lezza AM, Cantatore P, Gadaleta MN (2001) Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med 30:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Li Y, Zhu H, Lengauer C, Willson JKV, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B (1998) Somatic mutations of the mitochondrial genome in human colorectal tumors. Nat Genet 20:291–293

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan A, Wang C, Schreiber SL (2005) Perturbation profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci U S A 102:5992–5997

    Article  PubMed  CAS  Google Scholar 

  • Rocher C, Taanman J-W, Pierron D, Faustin B, Benard G, Rossignol R, Malgat M, Pedespan L, Letellier T (2008) Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases. J Bioenerg Biomembr 40:59–67

    Article  PubMed  CAS  Google Scholar 

  • Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993

    Article  PubMed  CAS  Google Scholar 

  • Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA (2007) Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9:493–505

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  PubMed  CAS  Google Scholar 

  • Seshadri T, Campisi J (1990) Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247:205–209

    Article  PubMed  CAS  Google Scholar 

  • Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, Bouvier R, Schagger H, Godinot C (2002) Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23:759–768

    Article  PubMed  CAS  Google Scholar 

  • Tallini G (1998) Oncocytic tumors. Virchows Arch 433:5–12

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed  CAS  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) The metabolism of tumors. Biochem Z 152:319–344

    Google Scholar 

  • Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H, Kang D, Kohno K (2003) P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 63:3729–3734

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Moiseeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moiseeva, O., Ferbeyre, G. (2014). Oncogene-Induced Senescence: Role of Mitochondrial Dysfunction. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 2. Tumor Dormancy and Cellular Quiescence and Senescence, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7726-2_5

Download citation

Publish with us

Policies and ethics