Skip to main content

MicroRNA-133: Biomarker and Mediator of Cardiovascular Diseases

  • Reference work entry
  • First Online:
Biomarkers in Cardiovascular Disease

Abstract

If we consider the molecular size of major nucleic acids and the time elapsed since we knew about their existence, microRNAs (miRs) comparatively appear as recently discovered and structurally small pieces of genetic material, but we should make no mistake to underestimate these modest but powerful molecules. Regulating no less than half of the transcriptome, their influence is a key for the fine-tuning of almost any biological process. miRs are considered elements that add precision and robustness to a myriad of physiological and pathological processes and commonly function as components of cellular networks by buffering extremes in gene expression. Their small size limits the side effects of these molecules and eases a pervasive behavior that explains their presence in different body fluids but also opens a complete new field of clinical opportunities for diagnostic, prognostic, or risk stratification applications which benefit from the possibility of bedside measurement.

From a purely investigational perspective, miRs constitute also a very useful tool. Their pleiotropic repressing effect on various, often functionally related, target mRNAs gives us clues on the molecular mechanisms underlying many pathological phenomena. On the other hand, since mRNA complementarity is dictated by a relatively short sequence (seed region) of nucleotides in the miR, computer-based prediction of miR targets is readily available. Additionally, “the control on the controllers” is tempting with the aim of modifying favorably the natural history of miR-related diseases. Several techniques to block or overexpress miRs have been launched, and, even though there are significant difficulties and drawbacks in their administration, some of them are starting to be used in human therapeutics.

miR-133 is muscle specific and one of the most abundant miRs in the heart. It plays major roles in the developing heart on cell differentiation into muscle tissue and also in later stages of cardiac morphogenesis. It is included among the handful of molecules able to cooperate for the experimental reprogrammation of fibroblasts into cardiac-like myocytes. miR-133 participates in the molecular pathology of myocardial hypertrophy, be it primary or secondary, in the transition and evolution of cardiac failure, in myocardial fibrosis and in cardiac cell apoptosis. In stable coronary artery disease and, particularly, in the acute coronary events, miR-133 levels decrease in the myocardium and increase in the circulation proportionally to the extent of the infarcted area. The value of circulating levels of miR-133 as a diagnostic and prognostic biomarker in these patients during the acute ischemic episode and after primary revascularization has already been established. Finally, research studies undertaken during the last 5 years show that dysregulation of miR-133 contributes to the pathological vascular remodeling underlying essential hypertension, vascular calcification, atherosclerosis, and aneurysmal disease.

At this time, it could be said that miRs are ready for prime time for diagnostic and prognostic purposes in the clinical arena, but more is coming on miR molecular manipulation with miR mimics and anti-miRs and even more with targeting of miR-related pathways. Meanwhile, other future uses of miRs in the fields of regenerative medicine and tissue engineering await for further refinement before they can be clinically applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAA:

Abdominal aortic aneurysm

ACS:

Acute coronary syndrome

AMI:

Acute myocardial infarction

BAV:

Bicuspid aortic valve

ceRNA:

Competing endogenous RNA

CHD:

Coronary heart disease

CTGF:

Connective tissue growth factor

cTn:

Cardiac troponin

ICA:

Intracranial aneurysm

lnc-RNA:

Long noncoding RNA

LV:

Left ventricle

LVAD:

Left ventricular assist device

MI:

Myocardial infarction

miR:

MicroRNA

MMP:

Matrix metalloproteinase

MRE:

miR recognition element

NSTEMI:

Non ST-elevation myocardial infarction

qRT-PCR:

Real-time polymerase chain reaction

ROC:

Receiver operating characteristic

STEMI:

ST-elevation myocardial infarction

TAA:

Thoracic aortic aneurysm

TAC:

Transverse aortic constriction

TAD:

Thoracic aortic dissection

TAV:

Tricuspid aortic valve

TGF-β:

Transforming growth factor-β

UA:

Unstable angina

UTR:

Untranslated region

VSMC:

Vascular smooth muscle cell

References

  • Akat KM, Moore-McGriff D, Morozov P, et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci U S A. 2014;111:11151–6.

    Article  CAS  PubMed  Google Scholar 

  • Albinsson S, Skoura A, Yu J, et al. Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS ONE. 2011;6:e18869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauters C, Kumarswamy R, Holzmann A, et al. Circulating miR-133a and miR-423-5p fail as biomarkers for left ventricular remodelling after myocardial infarction. Int J Cardiol. 2013;168:1837–40.

    Article  PubMed  Google Scholar 

  • Boštjančič E, Zidar N, Stajer D, et al. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology. 2010;115:163–169.

    Google Scholar 

  • Boštjančič E, Zidar N, Glavač D. MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis. BMC Genomics. 2012;13:552.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–8.

    Article  PubMed  Google Scholar 

  • Castaldi A, Zaglia T, Di Mauro V, et al. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade. Circ Res. 2014;115:273–83.

    Article  CAS  PubMed  Google Scholar 

  • Castoldi G, Di Gioia CR, Bombardi C, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 2012;227:850–6.

    Article  CAS  PubMed  Google Scholar 

  • Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Li C, Xu Y, et al. Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLoS ONE. 2014;9:e105702.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Wang Q, You W, et al. MiRNAs as biomarkers of myocardial infarction: a meta-analysis. PLoS ONE. 2014;9:e88566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheuk BL, Cheng SW. Identification and characterization of microRNAs in vascular smooth muscle cells from patients with abdominal aortic aneurysms. J Vasc Surg. 2014;59:202–9.

    Article  PubMed  Google Scholar 

  • Condorelli G, Latronico MV, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol. 2014;63:2177–2187.

    Article  CAS  PubMed  Google Scholar 

  • Corsten MF, Dennert R, Jochems S, et al. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3:499–506.

    Article  PubMed  Google Scholar 

  • Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483–95.

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31:2765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Costa Martins PA, De Windt LJ. MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res. 2012;93:563–72.

    Article  PubMed  Google Scholar 

  • Dangwal S, Thum T. microRNA therapeutics in cardiovascular disease models. Annu Rev Pharmacol Toxicol. 2014;54:185–203.

    Article  CAS  PubMed  Google Scholar 

  • Davis-Dusenbery BN, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol. 2011;31:2370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demer LL, Tintut Y. Vascular calcification pathobiology of a multifaceted disease. Circulation. 2008;117:2938–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeRosa S, Fichtlscherer S, Lehmann R, et al. Transcoronary concentration gradients of circulating microRNAs. Circulation. 2011;124:1936–44.

    Article  CAS  Google Scholar 

  • Devaux Y, Mueller M, Haaf P, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2013. doi:10.1111/joim.12183.

    Google Scholar 

  • Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodelling. Circ Res. 2009;104:170–8.

    Article  CAS  PubMed  Google Scholar 

  • Eitel I, Adams V, Dieterich P, et al. Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am Heart J. 2012;164:706–14.

    Article  CAS  PubMed  Google Scholar 

  • Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84.

    Article  CAS  PubMed  Google Scholar 

  • Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31:2383–90.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler J, Thum T. MicroRNAs in myocardial infarction. Arterioscler Thromb Vasc Biol. 2013;33:201–5.

    Article  CAS  PubMed  Google Scholar 

  • Fleury A, Martinez MC, Le Lay S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol. 2014;5:370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao S, Wassler M, Zhang L, et al. MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis. 2014;232:171–9.

    Article  CAS  PubMed  Google Scholar 

  • García R, Villar AV, Cobo M, et al. Circulating levels of miR-133a predict the regression potential of left ventricular hypertrophy after valve replacement surgery in patients with aortic stenosis. J Am Heart Assoc. 2013;2:e000211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gidlof O, Andersson P, van der Pals J, et al. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology. 2011;118:217–26.

    Article  PubMed  Google Scholar 

  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.

    Article  CAS  PubMed  Google Scholar 

  • He B, Xiao J, Ren AJ, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci. 2011;18:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res. 2013;100:7–18.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression in human heart disease. Physiol Genomics. 2007;31:367–73.

    Article  CAS  PubMed  Google Scholar 

  • Ikonomidis JS, Ivey CR, Wheeler JB, et al. Plasma biomarkers for distinguishing etiologic subtypes of thoracic aortic aneurysm disease. J Thorac Cardiovasc Surg. 2013;145:1326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivey KN, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell. 2008;2:219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izarra A, Moscoso I, Levent E, et al. miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Rep. 2014;3:1029–42.

    Article  CAS  Google Scholar 

  • Jaguszewski M, Osipova J, Ghadri JR, et al. A signature of circulating microRNAs differentiates Takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J. 2014;35:999–1006.

    Article  CAS  PubMed  Google Scholar 

  • Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579–88.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Zhang M, He H, et al. MicroRNA/mRNA profiling and regulatory network of intracranial aneurysm. BMC Med Genom. 2013;6:36.

    Article  Google Scholar 

  • Jin H, Li C, Ge H, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of intracranial aneurysm rupture a case control study. J Transl Med. 2013;11:296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JA, Stroud RE, O’Quinn EC, et al. Selective microRNA suppression in human thoracic aneurysms: relationship of miR-29a to aortic size and proteolytic induction. Circ Cardiovasc Genet. 2011;4:605e13.

    Article  Google Scholar 

  • Kin K, Miyagawa S, Fukushima S, et al. Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc. 2012;1:e000745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kontaraki JE, Marketou ME, Zacharis EA, et al. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens. 2014;28:510–6.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4:446–54.

    Article  CAS  PubMed  Google Scholar 

  • Lacolley P, Regnault V, Nicoletti A, et al. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 2012;95:194–204.

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  • Li P, Zhang Q, Wu X, et al. Circulating microRNAs serve as novel biological markers for intracranial aneurysms. J Am Heart Assoc. 2014;3:e000972.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao M, Zou S, Weng J, et al. A microRNA profile comparison between thoracic aortic dissection and normal thoracic aorta indicates the potential role of microRNAs in contributing to thoracic aortic dissection pathogenesis. J Vasc Surg. 2011;53:1341–9.

    Article  PubMed  Google Scholar 

  • Liao XB, Zhang ZY, Yuan K, et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology. 2013;154:344–3352.

    Article  Google Scholar 

  • Liebetrau C, Möllmann H, Dörr O, et al. Release kinetics of circulating muscle-enriched microRNAs in patients undergoing transcoronary ablation of septal hypertrophy. J Am Coll Cardiol. 2013;62:992–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22:3242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Han L, Wu X, et al. Genome-wide microRNA changes in human intracranial aneurysms. BMC Neurol. 2014;14:188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maegdefessel L, Spin JM, Adam M, et al. Micromanaging abdominal aortic aneurysms. Int J Mol Sci. 2013;14:14374–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matkovich SJ, Van Booven DJ, Youker KA, et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119:1263–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matkovich SJ, Wang W, Tu Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 2010;106:166–75.

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Tamai S, Kinpara Y, et al. Impact of different blood sampling techniques on plasma biomarkers for skeletal myopathy in conscious rats. Fund Toxicol Sci. 2015;2:25–36.

    Article  Google Scholar 

  • Mooren FC, Viereck J, Krüger K, et al. Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J Physiol Heart Circ Physiol. 2014;306:H557–63.

    Article  CAS  PubMed  Google Scholar 

  • Morley-Smith AC, Mills A, Jacobs S, et al. Circulating microRNAs for predicting and monitoring response to mechanical circulatory support from a left ventricular assist device. Eur J Heart Fail. 2014;16:871–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muraoka N, Yamakawa H, Miyamoto K, et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 2014;33:1565–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam YJ, Song K, Luo X, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A. 2013;110:5588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazari-Jahantigh M, Wei Y, Schober A. The role of microRNAs in arterial remodelling. Thromb Haemost. 2012;107:611–8.

    Article  CAS  PubMed  Google Scholar 

  • Norman PE, Powell JT. Site specificity of aneurysmal disease. Circulation. 2010;121:560–8.

    Article  CAS  PubMed  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801.

    Article  CAS  PubMed  Google Scholar 

  • Pahl MC, Derr K, Gäbel G, et al. MicroRNA expression signature in human abdominal aortic aneurysms. BMC Med Genomics. 2012;5:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Chun-guang Q, Bei-fang L, et al. Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction. Diagn Pathol. 2014;9:89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Andreu V, Teruel R, Corral J, et al. miR-133a regulates vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), a key protein in the vitamin K cycle. Mol Med. 2013;18:1466–72.

    PubMed  Google Scholar 

  • Perfetti A, Greco S, Bugiardini E, et al. Plasma microRNAs as biomarkers for myotonic dystrophy type 1. Neuromuscul Disord. 2014;24:509–15.

    Article  PubMed  Google Scholar 

  • Ramani R, Vela D, Segura A, et al. A micro-ribonucleic acid signature associated with recovery from assist device support in 2 groups of patients with severe heart failure. J Am Coll Cardiol. 2011;58:2270–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts TC, Blomberg KE, McClorey G, et al. Expression analysis in multiple muscle groups and serum reveals complexity in the microRNA transcriptome of the mdx mouse with implications for therapy. Mol Ther Nucleic Acids. 2012;1:e39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roncarati R, Viviani Anselmi C, Losi MA, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014;63:920–7.

    Article  CAS  PubMed  Google Scholar 

  • Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipper ME, van Kuik J, de Jonge N, et al. Changes in regulatory microRNA expression in myocardium of heart failure patients on left ventricular assist device support. J Heart Lung Transplant. 2008;27:1282–5.

    Article  PubMed  Google Scholar 

  • Shan H, Zhang Y, Lu Y, et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res. 2009;83:465–72.

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007;116:258–67.

    Article  CAS  PubMed  Google Scholar 

  • Torella D, Iaconetti C, Catalucci D, et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodelling in vivo. Circ Res. 2011;109:880–93.

    Article  CAS  PubMed  Google Scholar 

  • Townley-Tilson WHD, Callis TE, Wang D. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol. 2010;42:1252–5.

    Article  CAS  PubMed  Google Scholar 

  • Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  • van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6:851–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11:860–72.

    Article  PubMed  Google Scholar 

  • van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103:18255–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Villar AV, Merino D, Wenner M, et al. Myocardial gene expression of microRNA-133a and myosin heavy and light chains, in conjunction with clinical parameters, predict regression of left ventricular hypertrophy after valve replacement in patients with aortic stenosis. Heart. 2011;97:1132–7.

    Article  PubMed  Google Scholar 

  • Villar AV, García R, Merino D, et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int J Cardiol. 2013;167:2875–8.

    Article  PubMed  Google Scholar 

  • Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31:659–66.

    Article  PubMed  Google Scholar 

  • Wang E, Nie Y, Zhao Q, et al. Circulating miRNAs reflect early myocardial injury and recovery after heart transplantation. J Cardiothorac Surg. 2013a;8:165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Long G, Zhao C, et al. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med. 2013b;11:222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Schober A, Weber C. Pathogenic arterial remodelling: the good and bad of microRNAs. Am J Physiol Heart Circ Physiol. 2013;304:H1050–9.

    Article  CAS  PubMed  Google Scholar 

  • Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51:872–875.

    Article  CAS  PubMed  Google Scholar 

  • Widmer RJ, Chung WY, Herrmann J, et al. The association between circulating microRNA levels and coronary endothelial function. PLoS ONE. 2014;9:e109650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wystub K, Besser J, Bachmann A, et al. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet. 2013;9:e1003793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang KC, Yamada KA, Patel AY, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodelling with mechanical circulatory support. Circulation. 2014;129:1009–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Du J, Cao X, et al. Plasma levels of microRNA-499 provide an early indication of perioperative myocardial infarction in coronary artery bypass graft patients. PLoS ONE. 2014;9:e104618.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye H, Ling S, Castillo AC, et al. Nebivolol induces distinct changes in profibrosis microRNA expression compared with atenolol, in salt-sensitive hypertensive rats. Hypertension. 2013;61:1008–13.

    Article  CAS  PubMed  Google Scholar 

  • Yin VP, Lepilina A, Smith A, et al. Regulation of zebrafish heart regeneration by miR-133. Dev Biol. 2012;365:319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaharieva IT, Calissano M, Scoto M, et al. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular Dystrophy. PLoS ONE. 2013;8:e80263.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–20.

    Article  CAS  PubMed  Google Scholar 

  • Zile MR, Mehurg SM, Arroyo JE, et al. Relationship between the temporal profile of plasma microRNA and left ventricular remodelling in patients after myocardial infarction. Circ Cardiovasc Genet. 2011;4:614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Economía y Competitividad, Spanish Government [Instituto de Salud Carlos III (PI12/00999 and RETICS RD12/0042/0018); SAF2013-47434-Retos].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Francisco Nistal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Nistal, J.F., Villar, A.V., García, R., Hurlé, M.A. (2016). MicroRNA-133: Biomarker and Mediator of Cardiovascular Diseases. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7678-4_28

Download citation

Publish with us

Policies and ethics