Skip to main content

History, Philosophy, and Sociology of Science and Science-Technology-Society Traditions in Science Education: Continuities and Discontinuities

  • Chapter
  • First Online:
Book cover International Handbook of Research in History, Philosophy and Science Teaching

Abstract

In the last decades, a great amount of research has advocated innovating science education through teaching contents of the history, sociology, and philosophy of science in order for the students to get a reliable image of science, significant and relevant learning experiences, and higher interest and engagement in science. Given the embeddedness of techno-scientific systems in contemporary societies, the science-technology-society (STS) movement suggested the simple initiative of teaching science through making explicit the interrelationships between science, scientists, technology, and society to achieve these aims. Since then, the STS tradition has evolved and produced some conceptual variations. This paper deals with three of these variations that are currently the key areas of school science education research and teaching: “socio-scientific issues,” “scientific literacy for all,” and “nature of science.” As heirs of the STS tradition, these mottos embody, at the same time, a clear continuity with STS origins, and some discontinuities, which arise from the development of their own paradigms, adding original elements to the STS movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, e.g., Conant (1957), Holton et al. (1970), Klopfer (1963), and Klopfer and Watson (1957).

  2. 2.

    For more detailed history of the evolution of STS programs, see Aikenhead (2003).

  3. 3.

    Proponents of SSI instruction have suggested various instructional models for utilizing these socioscientific case studies to better achieve these aims (see, e.g., Sadler 2011). For example, Pedretti (2003) suggested a pedagogical model developed from Ratcliffe (1997) and which includes the following stages:

    1. 1.

      Option: Identify alternative courses of action for an issue.

    2. 2.

      Criteria: Develop suitable criteria for comparing alternative actions.

    3. 3.

      Information: Clarify general and scientific knowledge/evidence for criteria.

    4. 4.

      Survey: Evaluate pros/cons of each alternative against criteria selected.

    5. 5.

      Choice: Make a decision based on the analysis undertaken.

    6. 6.

      Review: Evaluate decision-making process identifying feasible improvements.

  4. 4.

    See, for instance, Agin (1974), Daugs (1970), Gabel (1976), Klopfer (1969), O’Hearn (1976), Pella (1967), Pella et al. (1966), and Shen (1975).

  5. 5.

    See, for instance, Adúriz-Bravo and Izquierdo-Aymerich (2009), Hodson (2003), Matthews (2004), and McComas and Olson (1998).

  6. 6.

    See, for instance, Abd-El-Khalick (2012), Lederman (2007), McComas and Olson (1998), and Osborne et al. (2003).

  7. 7.

    See, for instance, Abd-el-Khalick (2012), Leach et al. (2003), Lederman (2007), Osborne et al. (2003), Sandoval (2005), Tsai and Liu (2005), and Vesterinen et al. (2011).

  8. 8.

    See, for instance, Abd-El-Khalick (2012), Lederman et al. (2002), and Osborne et al. (2003).

  9. 9.

    See, for instance, Acevedo (2008), Matthews (2012), Vázquez et al. (2004), and Vesterinen et al. (2011).

  10. 10.

    See Abd-el-Khalick (2012), Bennett et al. (2007), Lederman (2007), Matthews (2012), Sadler (2011), and Vesterinen and Aksela (2012).

References

  • Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education, International Journal of Science Education, 34(3), 353–374.

    Article  Google Scholar 

  • Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22, 665–701.

    Article  Google Scholar 

  • Acevedo, J. A. (2008). El estado actual de la naturaleza de la ciencia en la didáctica de las ciencias [The state of art of the nature of science in science education]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 5(2), 134–169. Retrieved from http://www.apac-eureka.org/revista/Larevista.htm.

  • Acevedo, J. A., Vázquez, A., & Manassero, M. A. (2003). Papel de la educación CTS en una alfabetización científica y tecnológica para todas las personas [The role of STS education in scientific and technological literacy for all]. Revista Electrónica de Enseñanza de las Ciencias, 2(2). Retrieved from http://www.saum.uvigo.es/reec/.

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2009). A research-informed instructional unit to teach the nature of science to pre-service science teachers. Science & Education, 18, 1177–1192.

    Google Scholar 

  • Agin, M. (1974). Education for scientific literacy: A conceptual frame of reference and some applications. Science Education, 58, 403–415.

    Article  Google Scholar 

  • Aikenhead, G. S. (1994). What is STS teaching? In J. Solomon, & G. Aikenhead (Eds.), STS education: International perspectives on reform (pp. 47–59). New York, NY: Teachers College Press.

    Google Scholar 

  • Aikenhead, G. S. (2003). STS education: A rose by any other name. In R. Cross (Ed.), A vision for science education: Responding to the work of Peter J. Fensham (pp. 59–75). New York, NY: Routledge Press.

    Google Scholar 

  • Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York, NY: Teachers College, Columbia University.

    Google Scholar 

  • Aikenhead, G. S., & Ryan, A. G. (1992). The development of a new instrument: “Views on science-technology-society” (VOSTS). Science Education, 76, 477–491.

    Google Scholar 

  • American Association for the Advancement of Science (1993). Benchmarks for science literacy: A project 2061 report. New York, NY: Oxford University Press.

    Google Scholar 

  • Atlantic Science Curriculum Project (1986). SciencePlus 1. Toronto: Harcourt Brace Jovanovich.

    Google Scholar 

  • Atlantic Science Curriculum Project (1987). SciencePlus 2. Toronto: Harcourt Brace Jovanovich.

    Google Scholar 

  • Atlantic Science Curriculum Project (1988). SciencePlus 3. Toronto: Harcourt Brace Jovanovich.

    Google Scholar 

  • Bennett, J., Hogarth, S., & Lubben, F. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347–370.

    Google Scholar 

  • Bijker, W., Hughes, T., & Pinch, T. (Eds.) (1987). The social construction of technological systems: New directions in the sociology and history of technology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bybee, R. (1997). Achieving scientific literacy. Portsmouth, NH: Heineman.

    Google Scholar 

  • Carson, R. (1962). Silent spring. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Carter, L. (2008). Sociocultural influences on science education: innovation for contemporary times. Science Education, 92, 165–181.

    Article  Google Scholar 

  • Chen, D., & Novik, R. (1984). Scientific and technological education in an information society. Science Education, 68, 421–426.

    Article  Google Scholar 

  • Clark, W. C. (2007). Sustainability science: A room of its own. Proceedings of the National Academy of Science, 104, 1737–1738.

    Article  Google Scholar 

  • Clough, M. P. (2007). Teaching the nature of science to secondary and post-secondary students: Questions rather than tenets. The Pantaneto Forum, 25. Retrieved from http://www.pantaneto.co.uk/issue25/front25.htm.

  • Colucci-Gray, L., Camino, E., Barbiero, G., & Gray, D. (2006). From scientific literacy to sustainability literacy: An ecological framework for education. Science Education, 90, 227–252.

    Article  Google Scholar 

  • Colucci-Gray, L., Perazzone, A., Dodman, M., & Camino, E. (2012). Science education for sustainability, epistemological reflections and educational practices: From natural sciences to trans-disciplinarity. Cultural Studies of Science Education, published online (pre-print): 21 February 2012.

    Google Scholar 

  • Conant, J. (Ed.) (1957). Harvard case histories in experimental science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Cozzens, S. E. (1993). Whose movement? STS and social justice. Science, Technology, & Human Values, 18, 275–277.

    Article  Google Scholar 

  • Cutcliffe, S. H. (1990). The STS curriculum: What have we learned in twenty years. Science, Technology, & Human Values, 15(3), 360–372.

    Article  Google Scholar 

  • Dakers, J. (2006). Towards a philosophy for technology education. In Dakers, J. (Ed.), Defining technological literacy: Towards an epistemological framework (pp. 145–158). New York, NY: Palgrave.

    Chapter  Google Scholar 

  • Daugs, D. (1970). Scientific-literacy – re-examined. The Science Teacher, 37(8), 10–11.

    Google Scholar 

  • DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37, 582–601.

    Article  Google Scholar 

  • Deng, F., Chen, D.-T., Tsai, C.-C., & Chai, C. S. (2011). Students’ views of the nature of science: A critical review of research. Science Education, 95, 961–999.

    Article  Google Scholar 

  • Dillon, J. (2009). On scientific literacy and curriculum reform. International Journal of Environmental and Science Education, 4, 201–213.

    Google Scholar 

  • Donnelly, J. F. (2004). Humanizing Science Education. Science Education, 88, 762–784.

    Article  Google Scholar 

  • Eijkelhof, H. M. C., & Lijnse, P. L. (1988). The role of research and development to improve STS education: Experiences from the PLON-project. International Journal of Science Education, 10, 464–474.

    Article  Google Scholar 

  • Ellul, J. (1964). The technological society. New York: Alfred A. Knopf.

    Google Scholar 

  • Ehrlich, P. R. (1968). The population bomb. New York, NY: Ballantine Books.

    Google Scholar 

  • Fitzpatrick, F. (1960). Policies for science education. New York, NY: Teachers College press.

    Google Scholar 

  • Fourez, G. (1997). Scientific and technological literacy as a social practice. Social Studies of Science, 27, 903–936.

    Article  Google Scholar 

  • Friibergh Workshop on Sustainability Science (2000). Sustainability science: Statement of the Friibergh Workshop on Sustainability Science. Retrieved from http://sustainabilityscience.org/content.html?contentid = 774.

  • Gabel, L. L. (1976). The development of a model to determine perceptions of scientific literacy. Unpublished doctoral dissertation, Ohio State University.

    Google Scholar 

  • Gallagher, J. J. (1971). A broader base for science education. Science Education, 55, 329–338.

    Article  Google Scholar 

  • Gil, D. & Vilches, A. (2001). Una alfabetización científica para el siglo XXI. Obstáculos y propuestas de actuación. Investigación en la Escuela, 43, 27–37.

    Google Scholar 

  • Gräber, W., Nentwig, P., Becker, H.-J., Sumfleth, E., Pitton, A., Wollweber, K., & Jorde, D. (2002). Scientific literacy: From theory to practice. In H. Behrendt, H. Dahncke, R. Duit, W. Gräber, M. Komorek, A. Kross, & P. Reiska (Eds.), Research in science education: Past, Present and future (pp. 61–70). Dordrecht: Kluwer.

    Google Scholar 

  • Hacking, I. (1983). Representing and inventing: Introductory topics in the philosophy of natural science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hodson, D. (1994). Seeking directions for change: The personalization and politicization of science education. Curriculum Studies, 2, 71 –98.

    Google Scholar 

  • Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25, 645–670.

    Article  Google Scholar 

  • Hodson, D. (2008). Towards scientific literacy: A teachers’ guide to the history, philosophy and sociology of science. Rotterdam: Sense Publishers.

    Google Scholar 

  • Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and value. Rotterdam: Sense Publishers.

    Google Scholar 

  • Holbrook, J. (1998). Operationalising scientific and technological literacy: A new approach to science teaching. Science Education International, 9(2), 13–19.

    Google Scholar 

  • Holton, G., Rutherford, J., & Watson, F. (1970). Project physics course. New York, NY: Holt, Rinehart & Watson.

    Google Scholar 

  • Hurd, P. D. (1958). Science literacy: Its meaning for American schools. Educational Leadership, 16, 13–16, 52.

    Google Scholar 

  • Hurd, P. D. (1975). Science, technology and society: New goals for interdisciplinary science teaching. The Science Teacher, 42, 27–30.

    Google Scholar 

  • Hurd, P. D. (1998). Scientific literacy: New minds for a changing world. Science Education, 82, 407–416.

    Article  Google Scholar 

  • ITEA (2000). Standards for technological literacy: Content for the study of technology. Reston, VA: International Technology Education Association.

    Google Scholar 

  • Jones, P., Selby, D., & Sterling, S. (Eds.) (2010). Sustainability education: Perspectives and practice across higher education. London: Earthscan.

    Google Scholar 

  • Kahn, R., & Kellner, D. (2006). Reconstructing technoliteracy: A multiple literacies approach. In Dakers, J. (Ed) Defining technological literacy: towards an epistemological framework (pp. 254–273). New York, NY: Palgrave.

    Google Scholar 

  • Kates, R., Clark, W., Corell, R., Hall, J., Jaeger, C., Lowe, I., McCarthy, J., Schellnhuber, H-J., Bolin, B., Dickson, N., Faucheux, S., Gallopin, G., Grubler, A., Huntley, B., Jager, J., Jodha, N., Kasperson, R., Mabogunje, A., Matson, P., & Mooney, H. (2001). Sustainability science. Science, 292, 641–642.

    Article  Google Scholar 

  • Klopfer, L. E., & Watson, F. G. (1957). Historical materials and high school science teaching. The Science Teacher, 24, 264–293.

    Google Scholar 

  • Klopfer, L. E. (1963). The history of science cases for high schools in the development of student understanding of science and scientists: A report on the HOSC instruction project. Journal of Research in Science Teaching, 1, 33–47.

    Article  Google Scholar 

  • Klopfer, L. E. (1969). Science education in 1991. The School Review, 77, 199–217.

    Article  Google Scholar 

  • Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291–310.

    Article  Google Scholar 

  • Krageskov Eriksen, K. (2002). The future of tertiary chemical education: A bildung focus. HYLE: International Journal for Philosophy of Chemistry, 8, 35–48.

    Google Scholar 

  • Kuhn, T. S. 1962. The structure of scientific revolutions. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84, 71–94.

    Article  Google Scholar 

  • Layton, D. (1993). Technology’s challenge to science education: Cathedral, quarry or company stone? Buckingham: Open University Press.

    Google Scholar 

  • Leach, J., Hind, A., & Ryder, J. (2003). Designing and evaluating short teaching interventions about the epistemology of science in high school classrooms. Science Education, 87(6), 832–848.

    Article  Google Scholar 

  • Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of research. Journal of Research in Science Teaching, 29, 331–359.

    Article  Google Scholar 

  • Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39, 497–521.

    Article  Google Scholar 

  • Lewis, J. (1981). Science and society. London: Heinemann and Association for Science Education.

    Google Scholar 

  • MacKenzie, D., & Wajcman, J. (Eds.) (1985). The social shaping of technology: How the refrigerator got its hum. Philadelphia, PA: Open University Press.

    Google Scholar 

  • Manassero, M. A., & Vázquez, A. (2001). Percepción de los estudiantes sobre la influencia de la ciencia escolar en la sociedad. Bordón, 53, 97–113.

    Google Scholar 

  • Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. London: Routledge.

    Google Scholar 

  • Matthews, M. R. (1998). In defense of modest goals when teaching about the nature of science. Journal of Research in Science Teaching, 35, 161–174.

    Article  Google Scholar 

  • Matthews, M. R. (2004). Thomas Kuhn's impact on science education: What lessons can be learned? Science Education, 88, 90–118.

    Article  Google Scholar 

  • Matthews, M. R. (2012). Changing the focus: From nature of science (NOS) to features of science (FOS). In M. S. Khine (Ed.), Advances in Nature of Science Research. Concepts and Methodologies, (pp. 3–26), Dordrecht: Springer.

    Google Scholar 

  • McComas, W. F., Clough, M., & Almazroa, H. (1998). The role and character of the nature of science education. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 3–39). Dordrecht: Kluwer.

    Google Scholar 

  • McComas, W. F., & Olson, J. K. (1998). The nature of science in international science education documents. In W. F. McComas (Ed.), The nature of science in science education: rationales and strategies (pp. 41–52). Dordrecht: Kluwer.

    Google Scholar 

  • McCurdy, R. (1958). Toward a population literate in science. The Science Teacher, 25, 366–368, 408.

    Google Scholar 

  • Millar, R., & Osborne, J. (Eds.) (1998). Beyond 2000: Science education for the future. London: Kings College.

    Google Scholar 

  • Mumford, L. (1967–70). The myth of the machine. New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Nader, R. (1965). Unsafe at any speed: The designed-in dangers of the American automobile. New York: Grossman.

    Google Scholar 

  • National Commission on Excellence in Education (1983). A nation at risk: The imperative for educational reform. Washington, DC: US Department of Education.

    Google Scholar 

  • National Research Council (1996). National Science Education Standards. Washington, DC: National Academic Press.

    Google Scholar 

  • National Science Teachers Association (1982). Science-technology-society: Science education for the 1980s. Washington, DC: NSTA.

    Google Scholar 

  • Niaz, M. (2008). What ‘ideas-about-science’ should be taught in school science? A chemistry teachers’ perspective. Instructional Science, 36, 233–249.

    Article  Google Scholar 

  • O’Hearn, G. T. (1976). Scientific literacy and alternative futures. Science Education, 61, 103–114.

    Article  Google Scholar 

  • Oliver, J. S., Jackson, D. F., Chun, S., Kemp, A., Tippins, D. J., Leonard, R., Kang, N. H., & Rascoe, B. (2001). The concept of scientific literacy: A view of the current debate as an outgrowth of the past two centuries. Electronic Journal of Literacy through Science, 1.

    Google Scholar 

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‘ideas-about-science’ should be taught in school science? A delphi study of the expert community. Journal of Research in Science Education, 40, 692–720.

    Google Scholar 

  • Pedretti, E. (1997). Septic tank crisis: A case study of science, technology and society education in an elementary school. International Journal of Science Education, 19(10), 1211– 1230.

    Article  Google Scholar 

  • Pedretti, E. (2003). Teaching science, technology, society and environment (STSE) education: Preservice teachers’ philosophical and pedagogical landscapes. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education (pp. 219–239). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Pedretti, E., & Nazir, J. (2011). Currents in STSE education: Mapping a complex field, 40 years on. Science Education, 95, 601–626.

    Article  Google Scholar 

  • Pella, M. O. (1967). Science literacy and the high school curriculum. School Science and Mathematics, 67, 346–356.

    Article  Google Scholar 

  • Pella, M. O., O’Hearn, G. T., & Gale, C. W. (1966). Referents to scientific literacy. Journal of Research in Science Teaching, 4, 199–208.

    Article  Google Scholar 

  • Ratcliffe, M. (1997). Pupil decision-making about socioscientific issues within the science curriculum. International Journal of Science Education, 19, 167–182.

    Article  Google Scholar 

  • Roberts, D. (2007). Scientific literacy/science literacy. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Roth, W.-M., & Désautels, J. (Eds.) (2002). Science education as/for sociopolitical action. New York: Peter Lang.

    Google Scholar 

  • Rudolph, J. L. (2000). Reconsidering the 'nature of science' as a curriculum component. Journal of Curriculum Studies, 32(3), 403–419.

    Article  Google Scholar 

  • Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of the research. Journal of Research in Science Teaching, 41, 513–536.

    Article  Google Scholar 

  • Sadler, T. D. (Ed.) (2011). Socioscientific issues in the classroom: Teaching, learning and research. Dordrecht: Springer.

    Google Scholar 

  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634–656.

    Article  Google Scholar 

  • Santos, W. L. P. dos (2008). Scientific literacy: A Freirean perspective as a radical view of humanistic science education. Science Education, 93, 361–382.

    Google Scholar 

  • Shamos, M. H. (1995). The myth of scientific literacy. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Shen, B. S. P. (1975). Scientific literacy. American Scientist, 63, 265–268.

    Google Scholar 

  • Sismondo, S. (2010). An introduction to science and technology studies (Second edition). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Sjöström, J. (2008). The discourse of chemistry (and beyond). HYLE: International Journal for Philosophy of Chemistry, 13, 83–97.

    Google Scholar 

  • Solomon, J. (1983). Science in social content (SISCON). London: Basil Blackwell and Association for Science Education.

    Google Scholar 

  • Stokes, D. E. (1997). Pasteur’s quadrant: Basic science and technological innovation. Washington, D.C.: Brookings Institution.

    Google Scholar 

  • Tala, S. (2009). Unified view of science and technology education: Technoscience and technoscience education. Science & Education, 18, 275–298.

    Article  Google Scholar 

  • Tal, T., & Kedmi, Y. (2006). Teaching socioscientific issues: classroom culture and students’ performances. Cultural Studies of Science Education, 1, 615–644.

    Article  Google Scholar 

  • Thomas, G., & Durant, J. (1987). Why should we promote the public understanding of science? In M. Shortland (Ed.), Scientific literacy papers (pp. 1–14). Oxford: Department for External Studies, University of Oxford.

    Google Scholar 

  • Tippins, D. J., Nichols, S. E., & Kemp, A. (1999). Cultural myths in the making: The ambiguities of science for all. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Boston, MA.

    Google Scholar 

  • Tsai, C-C., & Liu, S-Y. (2005). Developing a multi-dimensional instrument for assessing students’ epistemological views toward science. International Journal of Science Education, 27(13), 1621–1638.

    Google Scholar 

  • UNESCO (1977). First intergovernmental conference on environmental education: Final report. Paris: UNESCO.

    Google Scholar 

  • UNESCO (2005). United Nations decade of education for sustainable development (2005–2014): International implementation scheme. Paris: UNESCO.

    Google Scholar 

  • United Nations (1987). Our common future: Report of the World Commission on Environment and Development. General Assembly Resolution 42/187, 11 December 1987.

    Google Scholar 

  • Vare, P., & Scott, W. (2007). Learning for a change: Exploring the relationship between education and sustainable development. Journal of Education for Sustainable Development, 1, 191–198.

    Google Scholar 

  • Vázquez, A., Acevedo, J. A., & Manassero, M. A. (2005). Más allá de una enseñanza de las ciencias para científicos: hacia una educación científica humanística [Beyond teaching science for scientists: Towards a humanistic science education]. Revista Electrónica de Enseñanza de las Ciencias, 4(2), Retrieved from http://www.saum.uvigo.es/reec/.

  • Vázquez, A., Acevedo, J.A., Manassero, M. A., & Acevedo, P. (2001). Cuatro paradigmas básicos sobre la naturaleza de la ciencia [Four basic paradigms about the nature of science]. Argumentos de Razón Técnica, 4, 135–176. Retrieved from http://www.campus-oei.org/salactsi/acevedo20.htm.

  • Vázquez, A., Acevedo, J. A., Manassero, M. A., & Acevedo, P. (2004). Hacia un consenso sobre la naturaleza de la ciencia en la enseñanza de las ciencias [Towards a consensus on the nature of science in science education]. In I. P. Martins, F. Paixão & R. Vieira (Org.), Perspectivas Ciência-Tecnologia-Sociedade na Inovação da Educação em Ciência (pp. 129–132), Aveiro (Portugal), Universidade de Aveiro.

    Google Scholar 

  • Vázquez, A., & Manassero, M. A. (2007). La relevancia de la educación científica [The relevance of science education]. Palma de Mallorca: Universitat de les Illes Balears.

    Google Scholar 

  • Vesterinen, V.-M., & Aksela, M. (2012). Design of chemistry teacher education course on nature of science. Science & Education, published online (pre-print): 23 June 2012.

    Google Scholar 

  • Vesterinen V.-M., Aksela M., & Lavonen J. (2011), Quantitative analysis of representations of nature of science in Nordic upper secondary school textbooks using framework of analysis based on philosophy of chemistry. Science & Education, published online (pre-print): 18 October 2011.

    Google Scholar 

  • Vesterinen, V.-M., Aksela, M., & Sundberg, M. R. (2009). Nature of chemistry in the national frame curricula for upper secondary education in Finland, Norway and Sweden. NorDiNa, 5, 200–212.

    Google Scholar 

  • Waterman, A. T. (1960). National Science Foundation: A ten-year résumé. Science, 131, 1341–1354.

    Article  Google Scholar 

  • Wonacott, M. E. (2001). Technological literacy. ERIC Digest, no. 233, retrieved from http://ericacve.org/digests.asp.

  • Yager, R. E. (1996). History of science/technology/society as reform in the United States. In R. E. Yager (Ed.), Science/technology/society as reform in science education (pp. 3–159). Albany, NY: State University of New York Press.

    Google Scholar 

  • Zeidler, D. L. (2001). Participating in program development: Standard F. In D. Siebert, & W. McIntosh (Eds.), College pathways to the science education standards (pp. 18–22). Arlington, VA: National Science Teachers Press.

    Google Scholar 

  • Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89, 357–377.

    Article  Google Scholar 

  • Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86, 343 – 367.

    Article  Google Scholar 

  • Ziman, J. (1984). An introduction to science studies: The philosophical and social aspects of science and technology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli-Matti Vesterinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vesterinen, VM., Manassero-Mas, MA., Vázquez-Alonso, Á. (2014). History, Philosophy, and Sociology of Science and Science-Technology-Society Traditions in Science Education: Continuities and Discontinuities. In: Matthews, M. (eds) International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7654-8_58

Download citation

Publish with us

Policies and ethics