Skip to main content

Spin Current Generation by Spin Pumping

  • Living reference work entry
  • First Online:
Handbook of Spintronics
  • 459 Accesses

Abstract

Magnetization dynamics is coupled with spin currents by exchanging the spin-angular momentum. This coupling allows to control magnetization by spin currents; spin injection into a ferromagnet induces magnetization precession. The inverse of this process, namely, spin current emission from precessing magnetization, is spin pumping, which offers a route for generating spin currents in a wide range of materials. This chapter describes experiments on the generation and detection of spin currents using the spin pumping and inverse spin-Hall effect. The inverse spin-Hall effect, conversion of spin currents into an electric voltage through spin-orbit interaction, induced by the spin pumping was first discovered in a metallic film. The spin pumping in this film is quantitatively consistent with a model calculation based on the Landau-Lifshitz-Gilbert equation. This dynamical spin injection, the spin pumping, offers an easy and versatile way for injecting spin currents into not only metals but also high-resistivity materials. In a metal/semiconductor junction, the spin pumping is demonstrated to be controlled electrically through the tuning of dynamical spin-exchange coupling at the interface. This spin-injection method works without applying a charge current, which makes it possible to generate spin currents from magnetic insulators; the spin pumping appears even in a metal/insulator junction due to finite spin-exchange interaction at the interface. The spin pumping from an insulator enables nonlinear generation of spin currents: nonlinear spin pumping. The combination of the spin pumping and inverse spin-Hall effect provides an essential route for exploring spin physics in condensed matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FMR:

Ferromagnetic resonance

ISHE:

Inverse spin-Hall effect

LLG:

Landau-Lifshitz-Gilbert

References

  1. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1

    Article  ADS  Google Scholar 

  2. Tserkovnyak Y, Brataas A, Bauer GEW (2002) Enhanced Gilbert damping in thin ferromagnetic films. Phys Rev Lett 88:117601

    Article  ADS  Google Scholar 

  3. Mizukami S, Ando Y, Miyazaki T (2002) Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys Rev B 66:104413

    Article  ADS  Google Scholar 

  4. Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E (2010) Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464:262

    Article  ADS  Google Scholar 

  5. Saitoh E, Ueda M, Miyajima H, Tatara G (2006) Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl Phys Lett 88:182509

    Article  ADS  Google Scholar 

  6. Ando K, Kajiwara Y, Takahashi S, Maekawa S, Takemoto K, Takatsu M, Saitoh E (2008) Angular dependence of inverse spin--Hall effect induced by spin pumping investigated in a Ni81Fe19/Pt thin film. Phys Rev B 78:014413

    Article  ADS  Google Scholar 

  7. Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E (2011) Inverse spin-Hall effect induced by spin pumping in metallic system. J Appl Phys 109(10):103913

    Article  ADS  Google Scholar 

  8. Morrish AH (1980) The physical principles of magnetism. Robert E. Krieger, New York

    Google Scholar 

  9. Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77:1375

    Article  ADS  Google Scholar 

  10. Mosendz O, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A (2010) Quantifying Spin Hall Angles from Spin Pumping: Experiments and Theory. Phys Rev Lett 104(4):046601

    Article  ADS  Google Scholar 

  11. Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E (2008) Electric manipulation of spin relaxation using the spin Hall effect. Phys Rev Lett 101:036601

    Article  ADS  Google Scholar 

  12. Tannenwald PE, Seavey MH Jr (1959) Microwave resonance in thin ferromagnetic films. J Phys Radium 20:323

    Article  Google Scholar 

  13. Juretschke HJ (1960) Electromagnetic theory of dc effects in ferromagnetic resonance. J Appl Phys 31:1401

    Article  ADS  Google Scholar 

  14. Chazalviel JN, Solomon I (1972) Experimental evidence of the anomalous Hall effect in a nonmagnetic semiconductor. Phys Rev Lett 29:1676

    Article  ADS  Google Scholar 

  15. Inoue HY, Harii K, Ando K, Sasage K, Saitoh E (2007) Detection of pure inverse spin-Hall effect induced by spin pumping at various excitation. J Appl Phys 102:083915

    Article  ADS  Google Scholar 

  16. Silsbee RH, Janossy A, Monod P (1979) Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic—normal-metal interface. Phys Rev B 19:4382

    Article  ADS  Google Scholar 

  17. Vila L, Kimura T, Otani Y (2007) Evolution of the Spin Hall Effect in Pt Nanowires: Size and Temperature Effects. Phys Rev Lett 99(22):226604

    Article  ADS  Google Scholar 

  18. Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R, Bauer GEW (2003) Dynamic exchange coupling in magnetic bilayers. Phys Rev Lett 90:187601

    Article  ADS  Google Scholar 

  19. Brataas A, Tserkovnyak Y, Bauer GEW, Halperin BI (2002) Spin battery operated by ferromagnetic resonance. Phys Rev B 66:060404(R)

    Article  ADS  Google Scholar 

  20. Ando K, Takahashi S, Ieda J, Kurebayashi H, Trypiniotis T, Barnes CHW, Maekawa S, Saitoh E (2011) Electrically tunable spin injector free from the impedance mismatch problem. Nat Mater 10:655

    Article  ADS  Google Scholar 

  21. L’vov VS (1994) Wave turbulence under parametric excitation. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Suhl H (1957) The theory of ferromagnetic resonance at high signal powers. J Phys Chem Solids 1:209

    Article  ADS  Google Scholar 

  23. Rezende S, de Aguiar F (1990) Spin-wave instabilities, auto-oscillations, and chaos in yttrium-iron-garnet. Proc IEEE 78(6):893

    Article  Google Scholar 

  24. Kabos P, Wiese G, Patton CE (1994) Measurement of spin wave instability magnon distributions for subsidiary absorption in yttrium iron garnet films by Brillouin light scattering. Phys Rev Lett 72(13):2093

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ando, K., Saitoh, E. (2015). Spin Current Generation by Spin Pumping. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7604-3_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7604-3_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7604-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics