Skip to main content

Spatially Adaptive Color Image Processing

  • Chapter
  • First Online:
Advances in Low-Level Color Image Processing

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 11))

Abstract

This chapter is focused on spatially adaptive image processing for color images in the context of the General Adaptive Neighborhood Image Processing (GANIP) approach. The GANIP was first defined for gray-tone images and is here extended to color images. A set of local adaptive neighborhoods is defined for each image point, depending on the color intensity function of the image. These adaptive neighborhoods are then used as spatially adaptive operational windows for defining adaptive Choquet filters and adaptive morphological filters. The resulting adaptive operators are successfully applied and compared with the classical operators for image restoration, enhancement and segmentation of color images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amattouch M (2005) Théorie de la Mesure et Analyse d’Image. Master’s thesis, Ecole Nationale Supérieure des Mines, Saint-Etienne, France

    Google Scholar 

  2. Angulo J (2007) Morphological colour operators in totally ordered lattices based on distances: application to image filtering, enhancement and analysis. Comput Vis Image Underst 107:56–73

    Article  Google Scholar 

  3. Angulo J, Velasco-Forero S (2011) Structurally adaptive mathematical morphology based on nonlinear scale-space decompositions. Image Anal Stereology 30(2):111–122

    Article  MathSciNet  Google Scholar 

  4. Aptoula E, Lefèvre S (2007) A comparative study on multivatriate mathematical morphology. Pattern Recogn 40(11):2914–2929

    Article  MATH  Google Scholar 

  5. Astola J, Haavisto P, Neuvo Y (1990) Vector median filtering. Proc IEEE 78(4):678–689

    Article  Google Scholar 

  6. Barnett V (1976) The ordering of multivariate data. J Roy Stat Soc A 139(3):318–354

    Article  Google Scholar 

  7. Bouaynaya N, Schonfeld D (2008) Theoretical foundations of spatially-variant mathematical morphology. Part II: Gray-Level Images. IEEE Trans Pattern Anal Mach Intell 30(5):837–850

    Article  Google Scholar 

  8. Busin L, Vandenbroucke N, Macaire L (2008) Advances in imaging and electron physics. chapter Color spaces and image segmentation, vol 151. Elsevier, Orlando, pp 65–168

    Google Scholar 

  9. Choquet G (2000) Cours de Topologie, chap. Espaces topologiques et espaces métriques. Dunod, Paris, pp 45–51

    Google Scholar 

  10. Curic V, Luengo C, Borgefors G (2012) Salience adaptive structuring elements. IEEE J Sel Top Signal Process, Spec Issue Filtering and Segmentation Math Morphol 6(7):809–819

    Article  Google Scholar 

  11. Debayle J, Pinoli JC (2006) General adaptive neighborhood image processing - Part I: introduction and theoretical aspects. J Math Imaging Vis 25(2):245–266

    Article  MathSciNet  Google Scholar 

  12. Debayle J, Pinoli JC (2006) General adaptive neighborhood image processing - Part II: practical application examples. J Math Imaging Vis 25(2):267–284

    Article  MathSciNet  Google Scholar 

  13. Debayle J, Pinoli JC (2009) General adaptive neighborhood choquet image filtering. J Math Imaging Vis 35(3):173–185

    Article  MathSciNet  Google Scholar 

  14. Debayle J, Pinoli JC (2009) General adaptive neighborhood representation for adaptive choquet image filtering. 10th European congress of stereology and image analysis. Milan, pp 431–436

    Google Scholar 

  15. Debayle J, Pinoli JC (2011) Advances in imaging and electron physics. chapter Theory and applications of general adaptive neighborhood image processing, vol 167. Elsevier, pp 121–183

    Google Scholar 

  16. Debayle J, Pinoli JC (2011) Applied biomedical engineering. chapter General adaptive neighborhood image processing for biomedical applications. InTech, pp 481–500

    Google Scholar 

  17. Gouinaud H, Gavet Y, Debayle J, Pinoli JC (2011) Color correction in the framework of color logarithmic image processing. 7th international symposium on image and signal processing and analysis. Dubrovnik, Croatioa, pp 129–133

    Google Scholar 

  18. Grabisch M (1994) Fuzzy integrals as a generalized class of order filters. In: Proceedings of the SPIE, vol 2315. pp 128–136

    Google Scholar 

  19. Hanbury A, Serra J (2001) Morphological operators on the unit circle. IEEE Trans Image Process 10(12):1842–1850

    Article  MATH  MathSciNet  Google Scholar 

  20. Joblove GH, Greenberg D (1978) Color spaces for computer graphics. Comput Graphics 12(3):20–25

    Article  Google Scholar 

  21. Lee JH, Chang BH, Kim SD (1994) Comparison of colour transformations for image segmentation. Electron Lett 30(20):1660–1661

    Article  Google Scholar 

  22. Lerallut R, Decencière E, Meyer F (2007) Image filtering using morphological amoebas. Image Vis Comput 25(4):395–404

    Article  Google Scholar 

  23. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: 5th berkeley symposium on mathematical statistics and probability, pp 281–297

    Google Scholar 

  24. Maragos P, Vachier C (2009) Overview of adaptive morphology: trends and perspectives. IEEE Int Conf Image Process. Cairo, pp 2241–2244

    Google Scholar 

  25. Matheron G (1967) Eléments pour une théorie des milieux poreux. Masson, Paris

    Google Scholar 

  26. Murofushi T, Sugeno M (1989) An interpretation of fuzzy measure and the choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets Syst 29:201–227

    Article  MATH  MathSciNet  Google Scholar 

  27. Ortiz F, Torres F, Gil P, Pomares J, Puente S, Candelas F (2001) Comparative study of vectorial morphological operations in different color spaces. Proceedings of the SPIE conference on intelligent robots and computer vision XX, vol 4572. Boston, MA, pp 259–268

    Google Scholar 

  28. Otha YI, Kanade T, Sakai T (1980) Color information for region segmentation. Comput Graphics Image Process 13:222–241

    Article  Google Scholar 

  29. Pinoli JC, Debayle J (2009) General adaptive neighborhood mathematical morphology. IEEE international conference on image processing (ICIP). Cairo, pp 2249–2252

    Google Scholar 

  30. Pinoli JC, Debayle J (2012) Adaptive generalized metrics, distance maps and nearest neighbor transforms on gray tone images. Pattern Recognit 45:2758–2768

    Article  MATH  Google Scholar 

  31. Pinoli JC, Debayle J (2012) Spatially and intensity adaptive morphology. IEEE J Selected Top Sig Process, Special Issue Filtering Segmentation Math Morphol 6(7):820–829

    Article  Google Scholar 

  32. Pitas I, Tsakalides P (1991) Multivariate ordering in color image filtering. IEEE Trans Circ Syst Video Technol 1:247–259

    Article  Google Scholar 

  33. Roerdink JBTM (2009) Adaptivity and group invariance in mathematical morphology. IEEE international conference on image processing. Cairo, pp 2253–2256

    Google Scholar 

  34. Serra J (1982) Image Anal Math Morphol. Academic Press, London

    Google Scholar 

  35. Soille P (2003) Morphological image analysis. Principles and applications. Springer, New York

    Google Scholar 

  36. Sugeno M (1974) Theory of fuzzy integrals ans its applications. Ph.D. thesis, Tokyo Institute of Technology, Japan

    Google Scholar 

  37. Tang K, Astola J, Neuvo Y (1995) Nonlinear multivariate image filtering techniques. IEEE Trans Image Process 4:788–798

    Article  Google Scholar 

  38. Trahanias PE, Venetsanopoulos AN (1993) Vector directional filters: a new class of multichannel image processing filters. IEEE Trans Image Process 2:528–534

    Article  Google Scholar 

  39. Trémeau A, Tominaga S, Plataniotis KN (2008) Color in image and video processing. EURASIP J Image Video Process 581371:1–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Debayle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Debayle, J., Pinoli, JC. (2014). Spatially Adaptive Color Image Processing. In: Celebi, M., Smolka, B. (eds) Advances in Low-Level Color Image Processing. Lecture Notes in Computational Vision and Biomechanics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7584-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7584-8_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7583-1

  • Online ISBN: 978-94-007-7584-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics