Skip to main content

Optics and Heat Transfer in Solar Collectors

  • Chapter
  • First Online:
Harnessing Solar Heat

Part of the book series: Lecture Notes in Energy ((LNEN,volume 18))

  • 2390 Accesses

Abstract

All substances emit electromagnetic radiation continuously in a particular range of the electromagnetic spectrum, the dominant form that such energy takes depends upon its nature and the form of the applied external excitation; electrical conductors emit radio waves when excited by an alternating current; certain elements emit X-rays if excited by atomic bombardment and if heated to a sufficiently high temperature all substances will emit visible light. Cosmic rays, X-rays, r-rays, visible light and radio waves are forms of electromagnetic radiation that, when absorbed by a substance, usually produces a very small heating effect. The wavelengths of the electromagnetic spectrum that interact with matter to produce significant radiative heating are confined to a band from approximately 0.1 to 100 μm; this includes a portion of the ultraviolet light together with all visible (0.40–0.7 μm) and infrared light bands. For many solar thermal systems the optical characteristics and geometries of aperture materials, reflectors and absorbers determines solar heat gains. How much of that heat is retained is determined largely by heat transfer (i) across air gaps, evacuated spaces, and insulation materials and (ii) provided by forced or buoyant removal of fluid from a collector.

A couple of thousand years dropped in the ocean of time will completely exhaust the coal fields of Europe, unless, in the meantime, the heat of the sun be employed

John Ericsson (1868)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anon (1985) ASTM E424-71. Standard test methods for solar energy transmittance and reflectance (Terrestrial) of sheet materials. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • Anon (1977a) ASHRAE Standard 94–77. Methods of testing thermal storage devices based on thermal performance. ASHRAE, New York

    Google Scholar 

  • Baer S (1975) “Breadbox” water heater plans. Zomeworks, Albuquerque

    Google Scholar 

  • Baker B, McDaniels OK, Kaehn HD, Lowndes DH (1978) Time integrated calculation of the insolation collected by a reflector-collector system. Solar Energy 20:415–417

    Article  Google Scholar 

  • Bhaduri S, Nguyen NH (1983) Transmissivity of solar collector covers, ASME Paper 83-WA/Sol-17

    Google Scholar 

  • Blaga A (1978) Use of plastics in solar energy applications. Solar Energy 21:331–338

    Article  Google Scholar 

  • Burek SAM, Norton B, Probert SD (1989) Transmission and forward scattering of insolation through transparent and semi­ transparent materials. Solar Energy 42(6):457–475

    Article  Google Scholar 

  • Burkhard DG, Shealy DL (1975) Design of reflectors which distribute light in a special manner. Solar Energy 17:221–227

    Article  Google Scholar 

  • Butti K, Perlin J (1980) A golden thread. Van Nostrand Reinhold, New York

    Google Scholar 

  • Cachorro VE, Casanova JL (1986) Optical efficiency of semistatic cylindrical-parabolic concentrator. Solar Energy 36:147–149

    Article  Google Scholar 

  • Carvalho MJ, Collares-Pereira M, Gordon JM, Rabl A (1985) Truncation of CPC solar collectors and its effect on energy collection. Solar Energy 35:393–399

    Article  Google Scholar 

  • Cheng H, Bannerot RB (1983) On the weathering of thin plastic films. ASME J Solar Energy Eng 105:149–156

    Article  Google Scholar 

  • Chinnery DNW (1967) Solar water heating in South Africa. SCIR Research Report, 284

    Google Scholar 

  • Driver P, Jones EW, Riddiford CL (1975) In: Proceedings symposium on solar energy resources, ISES, Australia and New Zealand, Sect 49

    Google Scholar 

  • Drude P (1904) Optische Eigenschaften und Electronen Theorie. An der Physik 14:936

    Article  Google Scholar 

  • Duff W, Winston R, O’Gallagher J, Henkel T, Berquam J (2004) Performance of the Sacremento demonstration ICPC collector and double effect chiller in 200 and 2001. Solar Energy 76:175–180

    Article  Google Scholar 

  • Duffie JA, Beckman WA (1974) Solar energy thermal processes. Wiley, New York

    Google Scholar 

  • Edlin FE (1959) Plastic glazings for solar energy absorption collectors. Solar Energy 2:3–6

    Article  Google Scholar 

  • Evans DL (1977) On the performance of cylindrical parabolic solar collectors with flat absorbers. Solar Energy 19:379–385

    Article  Google Scholar 

  • Favard GJ, Nawrocki AD (1981) Preliminary optical performance study of glazing-reflector systems in breadbox water heaters. In: Proceedings of 6th national passive solar conference, Portland, pp 188–191 (September)

    Google Scholar 

  • Fintel BW, Jakubowski GS (1985) Obtaining solar collector; cover transmissivities from a solar simulator, ASME paper 85-WA/Sol-3

    Google Scholar 

  • Godbey LC, Bond TE, Zornig HF (1979) Transmission of solar and long-wavelength energy by materials used as covers for solar collectors and greenhouses. Trans ASAE 22:1137–1144

    Article  Google Scholar 

  • Grassie N (1972) Degradation. In: Jenkins AD (ed) Polymer science, vol 2. North-Holland, Amsterdam

    Google Scholar 

  • Grassie SL, Sheridan NR (1977) The use of planar reflectors for increasing the energy yield of flat-plate collectors. Solar Energy 1(19):663–668

    Article  Google Scholar 

  • Grimmer DP, Zinn KG, Herr KC, Wood BE (1978) Augmented solar energy collection using various planar reflective surfaces, theoretical calculations and experimental results. Solar Energy 21:497–501

    Article  Google Scholar 

  • Gueymard C (1989) A simplified model for the computation of radiation transmission through a series of semi-transparent plates. Solar Energy 42:433–440

    Article  Google Scholar 

  • Harper CA (1975) Handbook of plastics and elastometers. McGraw-Hill, New York

    Google Scholar 

  • Hottel HC (1976) A simple model for estimating the transmittance of direct solar radiation through clear solar atmospheres. Solar Energy 18

    Google Scholar 

  • Hsieh CK (1981) Thermal analysis of CPC collectors. Solar Energy 27:19–29

    Article  Google Scholar 

  • Kaehn HD, Geyer M, Fong D, Vignola F, McDaniels DK (1978) Experimental evaluation of the reflector-collector system. In: Proceedings of the American section of the international solar energy society, Denver, vol 2(1), p 654

    Google Scholar 

  • Kahlen S, Wallner G, Lang RW (2010a) Aging behavior and lifetime modeling of polycarbonate. Solar Energy 84:755–762

    Article  Google Scholar 

  • Kahlen S, Wallner G, Lang RW, Meir M, Rekstad J (2010b) Aging behavior of polymeric solar absorber materials: aging on the component level. Solar Energy 84:459–465

    Article  Google Scholar 

  • Kienzlen V, Gordon JM, Kreider JF (1988) The reverse flat plate collector: a stationary, non-evacuated, low-technology, medium-temperature solar collector. ASME J Solar Energy Eng 110(1):23–30

    Article  Google Scholar 

  • Kimball WH, Munir ZA (1978) The effect of accelerated weathering on the degradation of polymeric films. Polym Eng Sci 18:230–237

    Article  Google Scholar 

  • Kothandaraman CP, Subramanyan S (1977) Heat and mass transfer data book, 3rd edn. Wiley Eastern, New Delhi

    Google Scholar 

  • Kothdiwala AF, Eames PC, Norton B, Zacharopoulos A (1999) Comparison between inverted absorber asymmetric and asymmetric tubular-absorber compound parabolic concentrations solar collectors. Renew Energy 18:277–281

    Article  Google Scholar 

  • Kothdiwala AF, Norton B, Eames PC (1995) The effect of variation of angle of inclination on the performance of low-concentration ratio compound parabolic concentrating solar collectors. Solar Energy 55(4):301–309

    Article  Google Scholar 

  • Lampert CM, Washburn J (1979) Microstructure of a black chrome solar selective absorber. Solar Energy Mater 1:82–92

    Google Scholar 

  • Larson DC (1980) Concentration ratios for flat-plate solar collectors with adjustable mirrors. J Energy 4(4):170–175

    Article  Google Scholar 

  • Look DC, Sundvold PO (1983) Analysis of concentrating collectors of energy from a distant point source. Solar Energy 31:545–555

    Article  Google Scholar 

  • Mar HYB, Peterson RE, Zimmor PB (1976) Low cost coatings for flat plate solar collectors. Thin Solid Films 29:98–103

    Google Scholar 

  • McDaniels OK, Lowndes DH, Mather H, Reynold J, Gray R (1975) Enhanced solar energy collection using reflector – solar thermal collector combinations. Solar Energy 17:277–283

    Article  Google Scholar 

  • McIntire WR (1979) Truncation of non-imaging cusp concentrators. Solar Energy 23(4):351–355

    Article  Google Scholar 

  • Meinel AB, Meinel MP (1976) Applied solar energy: an introduction. Addison-Wesley, Reading

    Google Scholar 

  • Mills DR (1978) The place of extreme asymmetrical non-focusing concentrators in solar energy utilization. Solar Energy 21(5):431–434

    Article  Google Scholar 

  • Mills DR (1986) Relative cost-effectiveness of periodically adjusted solar collectors using evacuated absorber tubes. Solar Energy 36:323–331

    Article  Google Scholar 

  • Mills DR, Guitronich JE (1978) Asymmetrical non-imaging cylindrical solar concentrators. Solar Energy 20(1):45–55

    Article  Google Scholar 

  • Norton B, Eames PC, Yadav YP (1991) Symmetric and asymmetric linear compound parabolic concentrating solar energy collectors. The state-of-the-art in optical and thermophysical analysis. Int J Ambient Energy 12(4): 171–190

    Google Scholar 

  • Norton B, Eames PC, Yadav YP, Griffiths PW (1997) Solar concentrators for rural applications. Int J Ambient Energy 18(3):115–120

    Article  Google Scholar 

  • Oreski G, Tscharnuter O, Wallner G (2010) Determination of the solar optical properties of transparent polymer films using UV/VIS spectroscopy. Solar Energy Mater Solar Cells 94:884–891

    Article  Google Scholar 

  • Prapas DE, Norton B, Probert SD (1987a) Optics of parabolic trough solar-energy collectors possessing small concentration ratios. Solar Energy 39(6):541–550

    Article  Google Scholar 

  • Prapas DE, Norton B, Melidis PE, Probert SD (1987b) Convective heat transfers within air-spaces of compound parabolic concentrating solar-energy collectors. Appl Energy 28:123–135

    Article  Google Scholar 

  • Rabl A (1976) Comparison of solar concentrators. Solar Energy 18:93–111

    Article  Google Scholar 

  • Rabl A (1985) Active solar collectors and their applications. Oxford University Press, Oxford

    Google Scholar 

  • Rabl A, Bendt P (1982) Effect of circumsolar radiation on performance of focusing collectors. ASME J Solar Energy Eng 104:237–250

    Article  Google Scholar 

  • Ranby B, Rabek JF (1975) Photodegradation, photo-oxidation and photostabilization of polymers. Wiley, New York

    Google Scholar 

  • Ratzel A, Hickox C, Gartling D (1979) Techniques for reducing thermal conduction and natural convection heat losses in annular receiver geometries. ASME J Heat Transfer 101:108–113

    Article  Google Scholar 

  • Rawson H (1982) Properties and applications of glass. Elsevier, Oxford

    Google Scholar 

  • Resch K, Wallner GM, Hausner R (2009) Phase separated thermotropic layers based on UW cured acrylic resens – effect of material formulation on overheating properties and application in a solar collector. Solar Energy 83:1689–1697

    Article  Google Scholar 

  • Rivero R (1958) Natural lighting – the calculation of the direct daylight factor for glazed and unglazed windows and for uniform and non-uniform skies. Building Research Station, Library Communication No. 860

    Google Scholar 

  • Robbins FV, Spillman CK (1980) Solar energy transmission through two transparent covers. Trans ASAE 22:1224–1231

    Article  Google Scholar 

  • Seitel SC (1975) Collector performance enhancement with flat reflectors. Solar Energy 17:291–295

    Article  Google Scholar 

  • Sharafi AS, Mukminova AG (1975) Procedure for computing the reflectivity, absorptivity and transmission coefficient for radiant energy in multilayer systems with varying optical properties. Geliotekhnika 11

    Google Scholar 

  • Shurcliff WA (1974) Transmittance and reflectance loss of multi-plate planar window of a solar-radiation collector formulas and tabulations of results for the case n = l.50. J Solar Energy 16:149–153

    Article  Google Scholar 

  • Siegel R (1973) Net radiation method for transmission through partially transparent plates. J Solar Energy 15:273–276

    Article  Google Scholar 

  • Simonis M, v.d Leij M, Hoogendoorn CJ (1979) Physics of doped tin dioxide films for spectral selective surfaces. Solar Energy Mate 1:221–231

    Article  Google Scholar 

  • Snail KA, O’Gallagher JJ, Winston R (1984) A stationary evacuated collectors with integrated concentrator. Solar Energy 33:441–449

    Article  Google Scholar 

  • Sparrow EM, Ramsey JW, Mass EA (1979) Effect of finite width on heat transfer and fluid flow about and inclined rectangular plate. ASME J Heat Transfer 101:2

    Google Scholar 

  • Stephenson DG (1965) Tables of solar altitude, azimuth, intensity and heat gain factor for latitudes from 43 to 55 degrees north. Solar Energy 9:81–86

    Article  Google Scholar 

  • Tabor H (1955) Selective radiations, wavelength discrimination. In: Transactions conference, use of solar energy, vol 2, 1A. Tuscon, pp 24–33

    Google Scholar 

  • Touloukian YS, Dewitt DP (1972) Thermal radiative properties, nonmetallic solids, thermophysica1 properties of matter 8, IFI/Plenum Data Corporation

    Google Scholar 

  • Tripanagnostopoulos Y, Yianoulis P (1992) Integrated collector-storage systems with suppressed thermal losses. Solar Energy 48(1):31–43

    Article  Google Scholar 

  • Wallner G, Resch K, Hausner R (2008) Property and performance requirements for thermotropic layers to prevent overheating in an all polymeric flat-plate collector. Solar Energy Mater Solar Cells 92:614–620

    Article  Google Scholar 

  • Weinstein A, Duncan RT Jr, Sherbin WC (1977) Lessons learned from Atlanta (Towns). Solar Energy 8:45–46

    Google Scholar 

  • Whillier A (1953a) Solar energy collection and its utilization for house heating. ScD Thesis, MIT

    Google Scholar 

  • Whillier A (1953b) The utilisation of solar energy in South Africa. J South African Inst Mech Eng 2:261–267

    Google Scholar 

  • Wijeysundera NE (1978) Geometric factors for plane specular reflectors. Solar Energy 20:81–85

    Article  Google Scholar 

  • Williams JR, Craig JI (1976) The Shenandoah solar community sharing the Sun. In: Proceedings of the American section of the international solar energy society, vol 3. Winnipeg, pp 200–212

    Google Scholar 

  • Winston R (1974) Principles of solar concentrators of a novel design. Solar Energy 16:89–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Norton, B. (2014). Optics and Heat Transfer in Solar Collectors. In: Harnessing Solar Heat. Lecture Notes in Energy, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7275-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7275-5_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7274-8

  • Online ISBN: 978-94-007-7275-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics