Skip to main content

Fungal Infection and Disease Progression. Fusarium spp. Enzymes Associated with Pathogenesis and Loss of Commercial Value of Wheat Grains

  • Chapter
  • First Online:
Fusarium Head Blight in Latin America

Abstract

Fusarium Head Blight (FHB) one of the most devasting diseases on small-grain cereals has caused severe epidemics worldwide, altering yield and quality parameters of the grains, as their weight, carbohydrate and protein composition and contamination with fungal toxins. The aggressiveness of Fusarium spp. utilizes different mechanisms, such as the production and release of extracellular plant-cell-wall-degrading enzymes so crucial in the processes of fungal colonization and disease establishment. A reduced secretion of enzymes might retard both the growth of the fungus on the host surface and the overall infection process, thus giving the host more time for a defensive response. Once infection is established, mycotoxins are released, which interfere with the metabolism of the host. Among the early extracellular enzymes secreted by fungal pathogens during infection, the pectic enzymes are often required for full virulence because the hydrolytic activity softens the cell walls, thus enabling the success of further infection steps and the spread of the mycelium into the inner tissues of the plant. Another group of enzymes relevant are the proteases, which degrade the storage proteins and thus have the greatest influence on quality of the grains. The nature and concentration of the proteins in wheat are some of the main determinants of its commercial value. Different techniques and methodologies are used in laboratories and in industry to analyze the protein content of wheat flours, since the result obtained enables a classification with respect to their quality and a categorization in terms of their end use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate PE, Gutheim F, Polidoro O, Milisich HJ, Cunibert M (2010) Fundamentos para la clasificación del trigo argentino por calidad: efectos del cultivar, la localidad, el año y sus interacciones. Agriscientia 27:1–9

    Google Scholar 

  • Alconada TM, Martínez MJ (1994) Purification and characterization of an extracellular endo-1,4-ß-xylanase from Fusarium oxysporum f. sp. melonis. FEMS Microbiol Lett 118:305–310

    PubMed  CAS  Google Scholar 

  • Alconada TM, Martínez MJ (1996) Purification and characterization of an ß-glucosidase from Fusarium oxysporum f. sp. melonis. Lett Appl Microbiol 22:106–110

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial applications of pectic enzymes: a review. Process Biochem 33(1):21–28

    Article  CAS  Google Scholar 

  • Altenbach SB, DuPont FM, Kothari KM, Chan R, Johnson EL, Lieu D (2003) Temperature, water and fertilizer influence the timing of key events during grain development in US Spring Wheat. J Cereal Sci 37:9–20

    Article  Google Scholar 

  • An HJ, Lurie S, Greve LC, Rosenquist D, Kirmiz C, Labavitch JM, Lebrilla CB (2005) Determination of pathogen-related enzyme action by mass spectrometry analysis of pectin breakdown products of plant cell walls. Anal Biochem 338:71–82

    Article  PubMed  CAS  Google Scholar 

  • Apel CP, Panaccione DG, Holden FR, Walton JD (1993) Cloning and targeted gene disruption of XYL1, a β-1,4-xylanase gene from the maize pathogen Cochliobolus carbonum. Mol Plant Microbe Interact 6:467–473

    Article  PubMed  CAS  Google Scholar 

  • Arfvidsson C, Wahlund KG, Eliasson AC (2004) Direct molecular weight determination in the evaluation of dissolution methods for unreduced glutenin. J Cereal Sci 39:1–8

    Article  CAS  Google Scholar 

  • Bai GH, Shaner G (1994) Scab of wheat: prospects for control. Plant Dis 78:760–766

    Article  Google Scholar 

  • Bai AE, Desjardins RD, Plattner RD (2001) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98

    Article  Google Scholar 

  • Barneix J (2007) Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J Plant Physiol 164:581–590

    Article  PubMed  CAS  Google Scholar 

  • Bechtel DB, Kaleidau LA, Gaines RL, Seitz LM (1985) The effects of Fusarium graminearum infection on wheat kernels. Cereal Chem 62:191–197

    Google Scholar 

  • Beliën T, Van Campenhout S, Van Acker M, Volckaert G (2005) Cloning and characterization of two endoxylanases from the cereal phytopathogen Fusarium graminearum and their inhibition profile against endoxylanase inhibitors from wheat. Biochem Biophys Res Commun 327:407–414

    Article  PubMed  CAS  Google Scholar 

  • Belton PS (2005) Review: new approaches to study the molecular basis of the mechanical properties of gluten. J Cereal Sci 41:203–211

    Article  CAS  Google Scholar 

  • Berto P, Comménil P, Belingheri L, Dehorter B (1999) Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauliflower leaves. FEMS Microbiol Lett 180:183–189

    Article  PubMed  CAS  Google Scholar 

  • Bietz JA (1986) High-performance liquid chromatography of cereal proteins. Adv Cereal Sci Technol 8:105–170

    CAS  Google Scholar 

  • Boyacioglu D, Hettiarachchy NS (1995) Changes in some biochemical components of wheat grain that was infected with Fusarium graminearum. J Cereal Sci 21:57–62

    Article  CAS  Google Scholar 

  • Brzozowski B, Dawidziuk K, Bednarski W (2008a) Gliadin degradation by proteases of Fusarium genus fungi in different in vivo and in vitro conditions. Pol J Nat Sci 23(1):188–206

    Article  Google Scholar 

  • Brzozowski B, Tatarczuk K, Szymkiewicz A, Bednarski W (2008b) Immunoreactive properties of wheat cv. tonacja storage proteins infected with Fusarium graminearum fungi. Pol J Food Nutr Sci 58(1):53–58

    CAS  Google Scholar 

  • Bushnell WR, Hazel B, Pritsch C (2003) Histology and physiology of Fusarium head blight. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. APS Press, St. Paul, pp 44–83

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Chelkowski J, Zawadzki M, Zajkowski P, Logrieco A, Bottalico A (1990) Moniliformin production by Fusarium species. Mycotoxin Res 6:41–45

    Article  PubMed  CAS  Google Scholar 

  • Colombo A, Ribotta PD, León AE (2008) Aplicación de electroforesis capilar para la caracterización de gliadinas de trigos argentinos. Agriscientia 25(2):57–64

    Google Scholar 

  • Comménil P, Belingheri L, Dehorter B (1998) Antilipase antibodies prevent infection of tomato leaves by Botrytis cinerea. Physiol Mol Plant Pathol 52:1–14

    Article  Google Scholar 

  • Cuniberti MB, Roth MR, MacRitchie F (2003) Protein composition-functionality relationships for a set of Argentinean wheats. Cereal Chem 80(2):132–134

    Article  CAS  Google Scholar 

  • Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond- Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, Münsterkötter M, Nelson D, O’donnell K, Ouellet T, Qi W, Quesneville H, Roncero MI, Seong KY, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao J, Birren BW, Kistler HC (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    Article  PubMed  CAS  Google Scholar 

  • De Sá Souza E (2009) Tecnología de productos panificados. Procesos de panificación de panes, facturas y repostería, AATA

    Google Scholar 

  • Dexter JE, Clear RM, Preston KR (1996) Fusarium head blight: effect on the milling and baking of some Canadian wheats. Cereal Chem 73:695–701

    CAS  Google Scholar 

  • Dimitri Milán J (1978) Enciclopedia Argentina de Agricultura y Jardinería. 3ro Ed. Tomo I, Familia Gramíneas, pp 145–149

    Google Scholar 

  • Di Pietro AD, García Maceira FI, Méglecz E, Roncero IG (2001) A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39:1140–1152

    Article  PubMed  Google Scholar 

  • D’Ovidio R, Masci S (2004) Review: the low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci 39:321–339

    Article  CAS  Google Scholar 

  • Dyer RB, Plattner RD, Kendra DF, Brown DW (2005) Fusarium graminearum TRII4 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. J Agric Food Chem 53:9281–9287

    Article  PubMed  CAS  Google Scholar 

  • Eggert K, Rawel HM, Pawelzik E (2011) In vitro degradation of wheat gluten fractions by Fusarium graminearum proteases. Eur Food Res Technol 233:697–705

    Article  CAS  Google Scholar 

  • Feng J (2007) Molecular characterization of a Fusarium graminearum lipase gene and its promoter. Doctoral thesis University of Saskatchewan, Saskatoon, Canada

    Google Scholar 

  • Feng J, Liu G, Selvaraj G, Hughes GR, Wei Y (2005) A secreted lipase encoded by LIP1 is necessary for efficient use of saturated triglyceride lipids in Fusarium graminearum. Microbiology 151:3911–3921

    Article  PubMed  CAS  Google Scholar 

  • Gagkaeva TY, Yli-Mattila T (2004) Genetic diversity of Fusarium graminearum in Europe and Asia. Eur J Plant Pathol 110:551–562

    Article  CAS  Google Scholar 

  • Galich AN, de Galich MTV (1996) Enfermedades de trigo en el área central norte de la región cerealera argentina. Infome Técnico 121. E.E.A INTA Marcos Juárez Córdoba Argentina

    Google Scholar 

  • García Maceira FI, Di Pietro AD, Huertas González MD, Ruiz Roldán MC, Roncero MI (2001) Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Environ Microbiol 67:2191–2196

    Article  PubMed  Google Scholar 

  • Gómez Gómez E, Roncero MIG, Di Pietro A, Hera C (2001) Molecular characterization of a novel endo-β-1,4-xylanase gene from the vascular wilt fungus Fusarium oxysporum. Curr Genet 40:268–275

    Article  PubMed  CAS  Google Scholar 

  • Guenther JC, Trail F (2005) The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia 97(1):229–237

    Article  PubMed  Google Scholar 

  • Hamauzu Z, Toyomazu T, Yonezawa D (1974) Molecular weight determination of gliadin fractions in gel filtration by ASDS-Page and sedimentation equilibrium. Agric Biol Chem 38:2445–2450

    Article  CAS  Google Scholar 

  • Hammond Kosack KE, Jones JDG (2000) Response to plant pathogens. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. ASPP Press, Rockville

    Google Scholar 

  • Hariri G, Williams PC, El Haramein FJ (2000) Influence of pentatomid insect on the physical dough properties and two-layered flat bread baking quality of Syrian wheat. J Cereal Sci 31:111–118

    Article  Google Scholar 

  • Harris SD (2005) Morphogenesis in germinating Fusarium graminearum macroconidia. Mycologia 97:880–887

    Article  PubMed  Google Scholar 

  • Harris LJ, Desjardins AE, Plattner RD, Nicholson P, Butler G, Young JC, Weston G, Proctor RH, Hohn TM (1999) Possible role of trichothecene mycotoxins in virulence of Fusarium graminearum on maize. Plant Dis 83:954–960

    Article  Google Scholar 

  • Hartley BS (1960) Proteolytic enzymes. Annu Rev Biochem 29:45–72

    Article  PubMed  CAS  Google Scholar 

  • Hatshc DH, Phalip V, Petkovski E, Jeltsch JM (2006) Fusarium graminearum on plant cell wall: no fewer than 30 xylanase genes transcribed. Biochem Biophys Res Commun 345:959–966

    Article  CAS  Google Scholar 

  • Hayashida D, Ohta K, Mo K (1988) Xylanase of Talaromyces byssochlamydoides. Methods Enzymol 160:675–678

    Article  CAS  Google Scholar 

  • Hermoso J, Sanz-Aparicio J, Molina R, Juge N, González R, Faulds CB (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J Mol Biol 338:495–506

    Article  PubMed  CAS  Google Scholar 

  • Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGVI) in Fusarium graminearum is required for female fertility, heterokaryon formation and plant infection. Mol Plant Microbe Interact 15(11):1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Hseu TH, Wey TT (1991) Purification and characterization of an endoxylanase from Trichoderma koningii G-39. Biochem J 278(2):329–333

    PubMed  CAS  Google Scholar 

  • Huebner FR, Nelsen TC, Chung OK, Bietz JA (1997) Protein distributions among hard red winter wheat varieties as related to environment and baking quality. Cereal Chem 74:123–128

    Article  CAS  Google Scholar 

  • Ireta Moreno J, Bekele GT (1987) Histopatología de la penetración de Fusarium graminearum Schw en trigo. In: Kohli MM (ed) Taller sobre la Fusariosis de la Espiga en America del Sur. Encarnación del Paraguay, Paraguay. CIMMYT, Mexico

    Google Scholar 

  • Jackowiak H, Packa D, Wiwart M, Perkowski J, Busko M, Borusiewicz A (2002) Scanning electron microscopy of mature wheat kernels infected with Fusarium culmorum. J Appl Genet 43(A):167–176

    Google Scholar 

  • Jansen C, von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Nat Acad Sci U S A 102(46):16892–16897

    Article  CAS  Google Scholar 

  • Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

    Article  CAS  Google Scholar 

  • Jenczmionka NJ, Schäfer W (2005) The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Curr Genet 47:29–36

    Article  PubMed  CAS  Google Scholar 

  • Jenczmionka NJ, Maier FJ, Losch AP, Schafer FJ (2003) Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr Genet 43:87–95

    PubMed  CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000a) Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. J Phytopathol 148:263–275

    Article  CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000b) Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol Res 104:1083–1093

    Article  Google Scholar 

  • Kang Z, Zingen Sell I, Buchenauer H (2005) Infection of wheat spikes by Fusarium avenaceum and alterations of cell wall components in the infected tissue. Eur J Plant Pathol 111:19–28

    Article  Google Scholar 

  • Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Biores Technol 77:215–227

    Article  CAS  Google Scholar 

  • Kieliszewski MJ, Lamport DTA (1994) Extensin: repetitive motivs, functional sites, posttranslational codes and phylogeny. Plant J 5:157–172

    Article  PubMed  CAS  Google Scholar 

  • Kikot GE, Hours RA, Alconada TM (2009) Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J Basic Microbiol 49:31–241

    Article  CAS  Google Scholar 

  • Kikot GE, Hours RA, Alconada TM (2010) Extracellular enzymes of Fusarium graminearum isolates. Braz Arch Biol Technol 53(4):779–783

    Article  CAS  Google Scholar 

  • Kikot GE, Moschini R, Consolo VF, Rojo R, Salerno G, Hours RA, Gasoni L, Arambarri AM, Alconada TM (2011) Occurrence of different species of Fusarium from wheat in relation to disease levels predicted by a weather-based model in Argentina pampas region. Mycopathologia 171:139–149

    Article  PubMed  CAS  Google Scholar 

  • Kluepfel D, Wats Mehta S, Aumont F, Shareck F, Morosoli R (1990) Purification and characterization of a new xylanase (xylanase B) by Streptomyces lividans 66. Biochem J 267:45–50

    PubMed  CAS  Google Scholar 

  • Kruger WM, Pritsch C, Chao S, Muehlbauer GJ (2002) Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Mol Plant Microbe Interact 15(5):445–455

    Article  PubMed  CAS  Google Scholar 

  • Láday M, Juhász Á, Mulé G, Moretti A, Logrieco A (2004) Mitochondrial DNA diversity and lineage determination of European isolates of Fusarium graminearum (Gibberella zeae). Eur J Plant Pathol 110:545–550

    Article  Google Scholar 

  • Langevin F, Eudes F, Comeau A (2004) The effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur J Plant Pathol 110:735–746

    Article  Google Scholar 

  • Larroque OR, Gianibelli MC, Gomez Sanchez M, MacRitchie F (2000) Procedure for obtaining stable protein extracts of cereal flour and whole meal for size-exclusion hplc analysis. Cereal Chem 77(4):448–450

    Article  CAS  Google Scholar 

  • Lazzari FA (2000) Control integrado de plagas, manejo de hongos e insectos. Granos y Post-cosecha Latinoamericana VI nº XXIII

    Google Scholar 

  • Lev S, Horwitz BA (2003) A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochlobolus heterostroophus during plant infection. Plant Cell 5:835–844

    Google Scholar 

  • Lopes DB, Fraga LP, Luciana Francisco Fleuri LF, Macedo GA (2011) Lipase and esterase to what extent can this classification be applied accurately? Cienc Tecnol Aliment Campinas 31(3):608–613

    Google Scholar 

  • Mabile F, Grill J, Abecassis J (2001) Mechanical properties of wheat seed coats. Cereal Chem 78(3):231–235

    Article  Google Scholar 

  • Malbrán I, Mourelos CA, Girotti JR, Aulicino MB, Balatti PA, Lori GA (2012) Aggressiveness variation of Fusarium graminearum isolates from Argentina following point inoculation of field grown wheat spikes. Crop Prot 42:234–243

    Article  Google Scholar 

  • Martínez MJ, Alconada TM, Guillén F, Vázquez C, Reyes F (1991) Pectic activities from Fusarium oxysporum f. sp. melonis. Purification and characterization of an exopolygalacturonase. FEMS Microbiol Lett 81:145–150

    Article  Google Scholar 

  • Matz S (1999) Bakery technology and engineering, 3rd edn. PanTech International, McAllen

    Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devasting impact. Plant Dis 81(12):1340–1348

    Article  Google Scholar 

  • Mestherhazy A, Bartok T, Mirocha CG, Komoroczy R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118:97–110

    Article  Google Scholar 

  • Meyer D, Weipert D, Mielke H (1986) Effects of Fusarium culmorum infection on wheat quality. Getreide Mehl Brot 40:35–39

    Google Scholar 

  • Miller SS, Chabot DMP, Ouellet T, Harris LJ, Fedak G (2004) Use of a Fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (Triticum aestivum). Can J Plant Pathol 26(4):453–463

    Article  CAS  Google Scholar 

  • Nightingale MJ, Marchylo BA, Clear RM, Dexter JE, Preston KR (1999) Fusarium head blight: effect of fungal proteases on wheat storage proteins. Cereal Chem 76:150–158

    Article  CAS  Google Scholar 

  • Niture SK, Kumar AR, Pant A (2006) Role of glucose in production and repression of polygalacturonase and pectate lyase from phytopathogenic fungus Fusarium moniliforme NCIM 1276. World J Microbiol Biotechnol 22:893–899

    Article  CAS  Google Scholar 

  • Panda T, Nair SR, Kumar P (2004) Regulation of synthesis of the pectolytic enzymes of Aspergillus niger. Enzyme Microbiol Technol 34:466–473

    Article  CAS  Google Scholar 

  • Parry DW, McLeod L, Jenkinson P (1995) Fusarium head blight (scab) in small grain cereal a review. Plant Pathol 4:207–238

    Article  Google Scholar 

  • Payne PI, Corfield KG, Blackman JA (1981) Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J Sci Food Agric 32:51–60

    Article  CAS  Google Scholar 

  • Pekkarinen AI (2003). The serine proteinases of Fusarium grown on cereal proteins and in barley grain and their inhibition by barley proteins. Academic dissertation, University of Wisconsin Madison USA

    Google Scholar 

  • Pekkarinen AI, Jones BL (2003) Purification and identification of Barley (Hordeum vulgare L.) proteins that inhibit the alkaline serine proteinases of Fusarium culmorum. J Agric Food Chem 51:1710–1717

    Article  PubMed  CAS  Google Scholar 

  • Pekkarinen AI, Mannonen L, Jones BL, Niku-Paavola ML (2000) Production of proteases by Fusarium species grown on barley grains and in media containing cereal proteins. J Cereal Sci 31:253–261

    Article  CAS  Google Scholar 

  • Pekkarinen AI, Jones BL, Niku Paavola ML (2002) Purification and properties of an alkaline proteinase of Fusarium culmorum. Eur J Biochem 269:798–807

    Article  PubMed  CAS  Google Scholar 

  • Pekkarinen AI, Tuija H, Sarlin TH, Latila AT, Haikara AI, Jones BL (2003) Fusarium species synthesize alkaline proteinases in infested barley. J Cereal Sci 37:349–356

    Article  CAS  Google Scholar 

  • Pekkarinen AI, Longstaff C, Jones BL (2007) Kinetics of the inhibition of Fusarium serine proteinases by barley (Hordeum vulgare l.) inhibitors. J Agric Food Chem 55:2736–2742

    Article  PubMed  CAS  Google Scholar 

  • Phalip V, Delande F, Carapito C, Goubet F, Hatsch D, Leize Wagner E, Dupree P, Van Dorsselaer A, Jetsch JM (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 48:366–379

    Article  PubMed  CAS  Google Scholar 

  • Pirgozliev RS, Edwards SG, Hare MC, Jenkinson P (2003) Strategies for the control of Fusarium head blight in cereals. Eur J Plant Pathol 109:731–742

    Article  Google Scholar 

  • Ponzio NR (2010) Calidad panadera de variedades de trigo puras y sus mezclas. Influencia del agregado de aditivos. Tesis de Magister Scientiae. Facultad de Ciencias Agrarias y Forestales. UNLP. Argentina

    Google Scholar 

  • Prange A, Birzele B, Krämer J, Meier A, Modrow H, Köhler P (2005) Fusarium-inoculated wheat: deoxynivalenol contents and baking quality in relation to infection time. Food Control 16:739–745

    Article  CAS  Google Scholar 

  • Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP (2000) Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant-Microbe Interact 13(2):159–169

    Article  PubMed  CAS  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8(4):593–601

    Article  PubMed  CAS  Google Scholar 

  • Reis EM, Carmona M (2002) Biología, epidemiología y estrategias para su manejo. In: Fusariosis del trigo Buenos Aires, Argentina, 25 pp

    Google Scholar 

  • Ribichich KF, Vegetti AC (2001) Fusariosis de la espiga de trigo: evaluación de caracteres exomorfológicos asociados a la resistencia. Revista de la Facultad de Agronomía La Plata 104(2):121–127

    Google Scholar 

  • Ribichich K, Lopez S, Vegetti AC (2000) Histopathological spikelet changes produced by Fusarium graminearum in susceptible and resistant wheat cultivars. Plant Dis 84(7):794–801

    Article  Google Scholar 

  • Rittenour WR, Harris SD (2010) An in vitro method for the analysis of infection-related morphogenesis in Fusarium graminearum. Mol Plant Pathol 11(3):361–369

    Article  PubMed  Google Scholar 

  • Rittenour WR, Harris SD (2012) In vitro induction of infection-related hyphal structures in plant pathogenic fungi. In: Bolton MD, Thomma BPH (eds) Plant fungal pathogens: methods and protocols, methods in molecular biology. Springer, New York

    Google Scholar 

  • Roncero MIG, Hera C, Ruiz-Rubio M, García-Maceira FI, Madrid MP, Caracuel Z, Calero F, Delgado Jarana J, Roldán Rodriguez R, Martínez Rocha AL (2003) Fusarium as a model for studying virulence in soilborne plant pathogens. Physiol Mol Plant Pathol 62:87–98

    Article  Google Scholar 

  • Schwarz PB, Schwarz JG, Zhou A, Prom LK, Steffenson BJ (2001) Effect of Fusarium graminearum and F. poae infection on barley and malt quality. Montsschr Brauwiss 54(3/4):55–63

    CAS  Google Scholar 

  • Schwarz PB, Jones BL, Steffenson BJ (2002) Enzymes associated with Fusarium infection of barley. J Am Soc Brew Chem 60(3):130–134

    CAS  Google Scholar 

  • Seong K, Hou Z, Tracy M, Kistler HC, Xu JR (2005) Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology 95:744–750

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53(370):947–958

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) The classification and nomenclature of wheat gluten proteins: a reassessment. J Cereal Sci 4:97–106

    Article  CAS  Google Scholar 

  • Shimokawa T, Kakegawa K, Ishii T (2002) Feruloyl esterases from suspension-cultured rice cells. Bull FFPRI 1(4):225–230

    CAS  Google Scholar 

  • Skadsen RW, Hohn TM (2004) Use of Fusarium graminearum transformed with gfp to follow infection patterns in barley and Arabidopsis. Physiol Mol Plant Pathol 64:45–53

    Article  CAS  Google Scholar 

  • Snijders CHA (2004) Resistance in wheat to Fusarium infection and trichothecene formation. Toxicol Lett 153(1):37–46

    Article  PubMed  CAS  Google Scholar 

  • Steffolani ME, Pérez GT, Ribotta PD, León A (2007) Relationship between variety classification and breadmaking quality in Argentine wheats. Int J Agric Res 2(1):33–42

    Google Scholar 

  • ten Have A, Mulder W, Visser JN, van Kan AL (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11:1009–1016

    Article  PubMed  Google Scholar 

  • Tosi EA, Re ED, Carbone L, Cuniberti M (2000) Breadmaking quality estimation by fast spectrophotometric method. Cereal Chem 77(6):699–701

    Article  CAS  Google Scholar 

  • Trail F (2009) For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol 149:103–110

    Article  PubMed  CAS  Google Scholar 

  • Trail F, Urban M, Gaffoor I, Mott E, Andries C, Hammond Kosack K (2003) Isolation and characterization of Fusarium graminearum mutants compromised in mycotoxin production and virulence. Fungal Genet Newsl 50(suppl):127

    Google Scholar 

  • Triboï E, Martre P, Triboi Blondel AM (2003) Environmentally induced changes in protein composition in developing grains of wheat are related to changes in total protein. J Exp Bot 54(388):1731–1742

    Article  PubMed  CAS  Google Scholar 

  • Turnbull KM, Rahman S (2002) Endosperm texture in wheat. J Cereal Sci 36:327–337

    Article  CAS  Google Scholar 

  • Ueno T, Stevenson SG, Preston KR, Nightingale MJ, Marchylo BM (2002) Simplified dilute acetic acid based extraction procedure for fractionation and analysis of wheat flour protein by size exclusion HPLC and flow field-flow fractionation. Cereal Chem 79(1):155–161

    Article  CAS  Google Scholar 

  • Valette Collet O, Cimerman A, Reignault P, Levis C, Boccara M (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces on several host plans. Mol Plant Microbe Interact 16:360–367

    Article  PubMed  CAS  Google Scholar 

  • Vázquez D, Berger AG, Cuniberti M, Bainotti C, Zavariz de Miranda M, Scheeren PL, Jobet C, Zúñiga J, Cabrera G, Verges R, Peña RJ (2012) Influence of cultivar and environment on quality of Latin American wheats. J Cereal Sci. doi:10.1016/j.jcs.2012.03.004

    Google Scholar 

  • Voigt CHA, Schafer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42:364–375

    Article  PubMed  CAS  Google Scholar 

  • Walker S, Leath S, Hagler WM, Murphy JP (2001) Variation among isolates of Fusarium graminearum associated with Fusarium Head Blight in North Carolina. Plant Dis 85(4):404–410

    Article  Google Scholar 

  • Wang J, Wieser H, Pawelzik E, Weinert J, Keutgen A, Wolf G (2005) Impact of the fungal protease produced by Fusarium culmorum on the protein quality and breadmaking properties of winter wheat. Eur Food Res Technol 220:552–559

    Article  CAS  Google Scholar 

  • Wanjiru WM, Zhensheng K, Buchenauer H (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat head. Eur J Plant Pathol 108:803–810

    Article  CAS  Google Scholar 

  • Wood TM, García Campayo V (1990) Enzymology of cellulose degradation. Biodegradation 1:147–161

    Article  CAS  Google Scholar 

  • Xu JR (2000) MAP kinases in fungal pathogens. Fungal Genet Biol 31:137–152

    Article  PubMed  CAS  Google Scholar 

  • Xu X (2003) Effects of environmental conditions on the development of Fusarium ear blight. Eur J Plant Pathol 109:683–689

    Article  Google Scholar 

  • Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171:299–323

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Khan K (2001) Effects of genotype and environment on glutenin polymers and breadmaking quality. Cereal Chem 78:125–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa M. Alconada Magliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Magliano, T.M.A., Kikot, G.E. (2013). Fungal Infection and Disease Progression. Fusarium spp. Enzymes Associated with Pathogenesis and Loss of Commercial Value of Wheat Grains. In: Alconada Magliano, T., Chulze, S. (eds) Fusarium Head Blight in Latin America. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7091-1_7

Download citation

Publish with us

Policies and ethics