Skip to main content

Hetero-Carbon: Heteroatomic Molecules and Nano-structures of Carbon

  • Conference paper
  • First Online:
Advanced Sensors for Safety and Security

Abstract

The hetero-carbon as hetero-fullerenes, hetero-graphene and hetero-nanotubes are considered as unique nanosensors which properties essentially differ from properties of undoped molecules and nanostructures of carbon. Products of a new method of pyrolysis (NMP) of pyridine by mass – spectrometric method are investigated. Fullerene С60 and its hydrides (С60Н6), small carbon molecules C3–C11, quasi-fullerene С48 and new heteroatomic fullerene-like molecules such as functionalized polyazafullerenes (C35N5)H9, (С45N5)(OH)3H14 and (С49N11)(OH)5Н18 with the large contents of nitrogen are basic substances formed at NMP of pyridine. The formation of undoped molecules С60, С60Н6 and С48 could be carried out only from fragments С2Н2, С3Н3, С4Н4 and С5Н5 of destruction of С55 molecules. The growth of heteroatomic molecules is carried out with participation of pyridine molecules or the product of their dehydrogenation (C5N).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krainara N, Illas F, Limtraku J (2012) Interaction of adenine Cu(II) complexes with BN-doped fullerene differentiates electronically equivalent tautomers. Chem Phys Lett 537(1):88–93

    Article  CAS  Google Scholar 

  2. Sandoval LM, Martinez H, Terrones M (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 386:137–143

    Article  Google Scholar 

  3. Lv R, Li Q, Botello-Méndez AR et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586

    Article  Google Scholar 

  4. Maeda-Mamiya R, Noiri E, Isobe H et al (2010) In vivo gene delivery by cationic tetraamino fullerene. Proc Natl Acad Sci USA 107:5339–5344

    Article  CAS  Google Scholar 

  5. Weidinger A, Waiblinger M, Pietzak B et al (1998) Atomic nitrogen in C60:N@C60. Appl Phys A: Mater Sci Process 66(3):287–292

    Article  CAS  Google Scholar 

  6. Suetsuna T, Dragoe N, Harneit W et al (2002) Separation of N2@C60 and N@C60. Chem Eur J 8(22):5079–5083

    Article  CAS  Google Scholar 

  7. Erkoc S, Turker L (2003) Ammonia deposition in fullerene: (NH3)N@C60. J Mol Struct (THEOCHEM) 640:57–61

    Article  CAS  Google Scholar 

  8. Yang S, Liu F, Chen C (2011) Fullerenes encaging metal clusters—clusterfullerenes. Chem Commun 47:11822–11839

    Article  CAS  Google Scholar 

  9. Wang TS, Feng L, Wu JY et al (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-Ih. J Am Chem Soc 132:16362–16364

    Article  CAS  Google Scholar 

  10. Zanchetta J, Marchand A (1965) Electronic properties of nitrogen doped carbons. Carbon 3:332

    Article  Google Scholar 

  11. Marchand A, Zanchetta JV (1966) Proprietes electroniques d’un carbone dope a l’azote. Carbon 3:483–491

    Article  CAS  Google Scholar 

  12. Belz T, Baue A, Find J et al (1998) Structural and chemical characterization of N-doped nanocarbons. Carbon 36:731–741

    Article  CAS  Google Scholar 

  13. Pradeep T, Vijayakrishnan V, Santra AK, Rao CNR (1991) Interaction of nitrogen with fullerenes: nitrogen derivatives of C60 and C70. Phys Chem 95:10564–10568

    Article  CAS  Google Scholar 

  14. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1991) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  15. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  16. Yu R, Zhan M, Cheng D et al (1995) Simultaneous synthesis of carbon nanotubes and nitrogen-doped fullerenes in nitrogen atmosphere. J Phys Chem 99:1818–1819

    Article  CAS  Google Scholar 

  17. Christian JF, Wan Z, Anderson SL (1992) N+ + C60 reactive scattering: substitution, charge transfer and fragmentation. J Phys Chem 96:10597–10600

    Article  CAS  Google Scholar 

  18. Averdung J, Luftmann H, Schlachter I, Mattay J (1995) Aza-dihydro[60]fullerene in the gas phase – a mass-spectrometric and quantum chemical study. Tetrahedron 51:6977–6982

    Article  CAS  Google Scholar 

  19. Glenis S, Cooke S, Chen X, Labes MM (1994) Photophysical properties of fullerenes prepared in an atmosphere of pyrrole. Chem Mater 6(10):1850–1853

    Article  CAS  Google Scholar 

  20. Lamparth I, Nuber B, Schick G et al (1995) C59N+ and C69N+: isoelectronic heteroanalogues of C60 and C70. Angew Chem Int Ed 34:2257–2259

    Article  CAS  Google Scholar 

  21. Hummelen JC, Knight B, Pavlovich J et al (1995) Isolation of the heterofullerene C59N as its dimer (C59N)2. Science 269:1554–1556

    Article  CAS  Google Scholar 

  22. Ying ZC, Hettich RL, Compton RN, Haufler RE (1996) Synthesis of nitrogen-doped fullerenes by laser ablation. J Phys B: At Mol Opt Phys 29:4935–4942

    Article  CAS  Google Scholar 

  23. Smalley RE (1992) Doping the fullerenes. ACS Symp Ser 481:141–159

    Article  CAS  Google Scholar 

  24. Weltner WJ, Walsh PN, Angell CL (1964) Spectroscopy of carbon vapor condensed in rare-gas matrices at 4° and 20° K. I. J Chem Phys 5:1299–1305

    Article  Google Scholar 

  25. Heath JR, Zhang Q, O’Brien SC et al (1987) The formation of long carbon chain molecules during laser vaporization of graphite. J Am Chem Soc 109:359–363

    Article  CAS  Google Scholar 

  26. Cataldo F (2004) Cyanopolyynes: carbon chains formation in a carbon arc mimicking the formation of carbon chains in the circumstellar medium. Int J Astrobiol 3:237–246

    Article  CAS  Google Scholar 

  27. Nuber B, Hirsh A (1996) A new route to nitrogen heterofullerenes and the first synthesis of (C69N)2. Chem Commun 12:1421–1442

    Google Scholar 

  28. Reuther U, Hirsch A (2000) Synthesis, properties and chemistry of aza[60]fullerene. Carbon 38:1539–1549

    Article  CAS  Google Scholar 

  29. Otero G, Biddau G, Sanchez-Sanchez C et al (2008) Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation. Nature 454:865–869

    Article  CAS  Google Scholar 

  30. Tobe Y, Nakanishi H, Sonoda M et al (1999) Pyridine analogue of macrocyclic polyyne C58H4N2 as a precursor to diazafullerene C58N2. Chem Commun 17:1625–1626

    Google Scholar 

  31. Hultman L, Stafström S, Czigány Z (2001) Cross-linked nano-onions of carbon nitride in the solid phase: existence of a novel C48N12 aza-fullerene. Phys Rev Lett 87:225503–225507

    Article  CAS  Google Scholar 

  32. Guo T, Jin C, Smalley RE (1991) Doping bucky: formation of boron doped buckminsterfullerene. J Phys Chem 95:4948–4950

    Article  CAS  Google Scholar 

  33. Chai Y, Guo T, Jin C et al (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568

    Article  CAS  Google Scholar 

  34. Muhr HJ, Nesper R, Schnyder B, Kotz R (1996) The boronheterofullerenes C59B and C69B: generation, extraction, mass spectrometric and XPS characterization. Chem Phys Lett 249:399–405

    Article  CAS  Google Scholar 

  35. Piechota J, Byszewski P, Jablonski R, Antonova K (1996) Characterization of fullerenes obtained from boron nitrite containinggraphite-electrodes – electronic-structure of C60-X-YBXNY and deformed C60. Fuller Sci Technol 4:491–507

    Article  CAS  Google Scholar 

  36. Cao BP, Zhou XH, Shi ZJ, Jin ZX (1997) Synthesis and characterization of boron-doped fullerenes [J]. Acta Phys Chim Sin 13(03):204–206

    CAS  Google Scholar 

  37. Churilov GN (2000) Plasma synthesis of fullerenes. PTE 1:5–15

    Google Scholar 

  38. Churilov GN, Alikhanyan AS, Nikitin MI, Glushenko GA et al (2003) Synthesis and characterization of boron- and scandium-containing fullerenes. Tech Phys Lett 29(2):168–170

    Article  CAS  Google Scholar 

  39. Bulina NV, Glushchenko GA, Novikov PV et al. (2003) Study of boron substituted fullerene. In: Schur DV, Zaginaichenko SYu, Veziroglu TN (eds) Hydrogen materials science and chemistry of carbon nanomaterials ichms, VIII international conference, sudak, Crimea, 2003, pp 538–541

    Google Scholar 

  40. Nakamura T, Ishikawa K, Yamamoto K et al (1999) Synthesis of heterofullerenes by laser ablation. Phys Chem Chem Phys 1:2631–2633

    Article  CAS  Google Scholar 

  41. Nakamura T, Ishikawa K, Goto A, Ishihara M (2001) BN substitution reaction of fullerene using an excimer laser irradiation. Diamond Relat Mater 10:1228–1230

    Article  CAS  Google Scholar 

  42. Nakamura T, Ishikawa K, Goto A, Ishihara M (2003) Synthesis of heterofullerene using a direct BN substitution reaction of fullerene. Diamond Relat Mater 12:1908–1911

    Article  CAS  Google Scholar 

  43. Krainara N, Luksirikul P, Sirijaraensre J et al (2007) Conduction properties of BN-doped fullerene chain obtained by density functional calculations. Nanotechnology 1:508–511

    CAS  Google Scholar 

  44. Pellarin M, Ray C, Lerme J et al (1999) Production and stability of silicon-doped heterofullerenes. Eur Phys J D 9:49–54

    Article  CAS  Google Scholar 

  45. Fan X, Zhu Z, Liu L et al (2010) Theoretical study on structural stability of alloy cages: a case of silicon-doped heterofullerenes. Commun Comput Phys 8:289–303

    Google Scholar 

  46. Ray C, Pellarin M, Lerme JL et al (1998) Synthesis and structure of silicon-doped heterofullerenes. Phys Rev Lett 80:5365–5368

    Article  CAS  Google Scholar 

  47. Moschel C, Jansen M (1999) Generation of stable phosphorus heterofullerenes in a radiofrequency furnace. Z Anorg A C 625(2):175–177

    Article  Google Scholar 

  48. Ohtsuki T, Ohno K, Shiga K et al (1999) Formation of As- and Ge-doped heterofullerenes. Phys Rev B 60:1531–1534

    Article  CAS  Google Scholar 

  49. Brown RFC (1980) Pyrolytic methods in organic chemistry: application of flow and flash vacuum pyrolytic techniques. Academic, New York

    Google Scholar 

  50. Kharlamov AI, Kirillova NV (2009) Fullerenes and hydrides of fullerenes as products trans-formation (polycondensation) of molecules of aromatic hydrocarbons. Rep Acad Sci Ukraine 5:110–118

    Google Scholar 

  51. Kharlamov АI, Bondarenko ME, Kirillova NV (2012) New method for synthesis of fullerenes and fullerene hydrides from benzene. Russ J Appl Chem 85:233–239

    Article  CAS  Google Scholar 

  52. Crowley C, Taylor R, Kroto HW, Walton DRM (1996) Pyrolytic production of fullerenes. Synth Met 77:17–22

    Article  CAS  Google Scholar 

  53. Kharlamov AI, Kirillova NV (2011) New substance: molecular crystals of fullerene-like N-containing molecule of carbon – (C50N10)O3H10. Rep Acad Sci Ukraine 6:156–163

    Google Scholar 

  54. Kharlamov O, Kharlamova G, Kirillova N et al (2012) Synthesis of new carbon compounds: n-doped fullerene (C50N10)O3H10 and “pyridine” nanocarbon synthesis of new carbon compounds. In: Vaseashta A, Braman E, Susmann P (eds) Technological innovations in sensing and detection of chemical, biological, radiological, nuclear threats and ecological terrorism, NATO science for peace and security series, a: chemistry and biology. Springer Science+Business Media B.V., Dordrecht, Chap. 27, pp 245–253

    Chapter  Google Scholar 

  55. Winkler JK, Karow W, Rademacher P (2000) Gas phase pyrolysis of heterocyclic compounds, flow pyrolysis and annulation reactions of some nitrogen heterocycles. Arkivoc 3:576–602

    Article  Google Scholar 

  56. Houser TJ, McMarville ME, Biftu T (1980) Kinetics of the thermal decomposition of pyridine in a flow system. Int J Chem Kinet 12:555–558

    Article  CAS  Google Scholar 

  57. Mackie JC, Colket MB, Nelson PF (1990) Shock tube pyrolysis of pyridine. J Phys Chem 94:4099–4106

    Article  CAS  Google Scholar 

  58. Teddy J (2009) CVD synthesis of carbon nanostructures and their applications as supports in catalysis. ethesis, Toulouse University, Toulouse, pp 1–113

    Google Scholar 

  59. Colket MB, Hall RJ, Sangiovanni JJ, Seery DJ (1990) In: Hartford E (ed) The determination of rate-limiting steps during soot formation. United Technologies Research Center, East Hartford, pp 1–437

    Google Scholar 

  60. Kong Q, Zhao L, Zhuang J et al (2001) Formation of odd-numbered fullerene-related species and its relation to the formation of metallofullerenes. Int J Mass Spectrom 209(1):69–79

    Article  CAS  Google Scholar 

  61. Vaziri M (2006) Synthesis of small carbon-nitride heterofullerenes. Mater Lett 60(7):926–928

    Article  CAS  Google Scholar 

  62. Vasil’ev YV, Hirsch A, Taylor R, Drewello T (2004) Hydrogen storage on fullerenes: hydrogenation of C59N using C60H36 as the source of hydrogen. Chem Commun 7(15):1752–1753

    Article  Google Scholar 

  63. Vasil’ev YV, Abzalimov RR, Tuktarov RF et al (2002) In situ hydrogenation of C59N and resonant electron capture of C59NH x (x = 0, 1 and 5). Chem Commun Lett 354(5–6):361–366

    Google Scholar 

  64. Keshavarz-K M, González R, Hicks RG et al (1996) Synthesis of hydroazafullerene C59HN, the parent hydroheterofullerene. Nature 383(6596):147–150

    Article  CAS  Google Scholar 

  65. Jin C, Hettich R, Compton R et al (1994) Direct solid phase hydrogenation of fullerenes. J Phys Chem 98(16):4215–4217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganna Kharlamova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kharlamova, G., Kharlamov, O., Bondarenko, M., Gubareni, N., Fomenko, V. (2013). Hetero-Carbon: Heteroatomic Molecules and Nano-structures of Carbon. In: Vaseashta, A., Khudaverdyan, S. (eds) Advanced Sensors for Safety and Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7003-4_31

Download citation

Publish with us

Policies and ethics