Skip to main content

Photosynthesis in Aquatic Bryophytes

  • Chapter
  • First Online:
Photosynthesis in Bryophytes and Early Land Plants

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 37))

Summary

Aquatic bryophytes occupy streams, lakes, and wetlands where they face limited CO2 in solution, limited CO2 diffusion, high boundary layer resistance, and loss of light with depth, especially red light. Limitations to photosynthesis in the water are therefore somewhat different from those on land. Of primary importance is the availability of CO2 and hence, pH is important in determining the availability of this gas. There is also limited evidence that some mosses might be able to convert bicarbonates to CO2 at the moss surface or within the cell to increase access to carbon. The often one-cell-thick leaves permit light and CO2 to reach photosynthetic cells directly, but boundary-layer resistance can reduce CO2 uptake. Other nutrients can be somewhat limiting, especially phosphorus and nitrogen. Sedimentation, and overgrowth by diatoms, other algae, and detrital complex, can block light, and water decreases the light with depth. This is further complicated by the rapid attenuation of red light. The aquatic environment protects chlorophyll from UV radiation, and in areas with high light intensity, at least some bryophytes produce enhanced pigmentation to serve as a filter. In dry seasons, lack of water can limit or halt photosynthesis. Temperature also can be a problem at this time, with exposed but still hydrated mosses in some cases reaching temperatures unknown in submersed conditions, and causing elevated respiration that can exceed photosynthetic fixation. High temperatures may greatly limit the presence of many cosmopolitan species of aquatic bryophytes in tropical regions. Contrarily, many aquatic mosses have temperature optima in the 0–20 °C range, with optima depending on their usual habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAM:

Crassulacean Acid Metabolism;

DW:

Dry Weight;

LSA:

Leaf Specific Area;

RuBP:

Ribulose-1,5-bisphosphate;

W m–2 :

Watts per m2

References

  • Alghamdi AA (2003) The effect of inorganic and organic nitrogen sources and their combination on growth and metabolism of Vesicularia dubyana. PhD dissertation, Michigan Technological University, Houghton

    Google Scholar 

  • Allen ED, Spence DHN (1981) The differential ability of aquatic plants to utilize the inorganic C supply in freshwater. New Phytol 87:269–283

    CAS  Google Scholar 

  • Andersen T, Pedersen O (2002) Interactions between light and CO2 enhance the growth of Riccia fluitans. Hydrobiologia 477:163–170

    CAS  Google Scholar 

  • Arancibia P, Graham L (2003) Carbonic anhydrase. In: Charophyceae and bryophytes. Abstract, Botany 2003, Aquatic and wetland plants: wet and wild. Botanical Society of America, Mobile, p 65

    Google Scholar 

  • Aravena R, Warner BG, MacDonald GM, Hanf KL (1992) Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating. Quat Res 37:333–345

    CAS  Google Scholar 

  • Aronsson KA, Ekelund NG (2006) Effects on growth, photosynthesis and pigments of the freshwater moss Fontinalis antipyretica Hedw. after exposure to wood ash solution. Sci Total Environ 372:236–246

    PubMed  CAS  Google Scholar 

  • Aronsuu I, Vuori K-M, Nieminen M (1999) Survival and growth of transplanted Fontinalis dalecarlica (Bryophyta) in controlled flow and short-term regulated flow sites in the Perhonjoki River, Western Finland. River Res Appl 15:87–97

    Google Scholar 

  • Arróniz-Crespo M, Núñez-Olivera E, Martínez-Abaigar J, Tomás R (2004) A survey of the distribution of UV-absorbing compounds in aquatic bryophytes from a mountain stream. Bryologist 107:202–208

    Google Scholar 

  • Arróniz-Crespo M, Núñez-Olivera E, Martínez-Abaigar J (2008a) Hydroxycinnamic acid derivatives in an aquatic liverwort as possible bioindicators of enhanced UV radiation. Environ Pollut 151:8–16

    PubMed  Google Scholar 

  • Arróniz-Crespo M, Phoenix G, Núñez-Olivera E, Martínez-Abaigar J (2008b) Age-specific physiological responses to UV radiation in the aquatic liverwort Jungermannia exsertifolia subspecies cordifolia (Dumort.). In: Mohamed H, Bakar BB, Boyce AN, Yuen PLK (eds) Bryology in the new millennium: proceedings of the world bryology conference 2007, Kuala Lumpur, Malaysia. Institute of Biological Sciences, University of Malaya, Kuala Lumpur, pp 339–345

    Google Scholar 

  • Arscott DB, Bowden WB, Finlay JC (1998) Comparison of epilithic algal and bryophyte metabolism in an arctic tundra stream, Alaska. J N Am Benthol Soc 17:210–227

    Google Scholar 

  • Austin KA, Wieder RK (1987) Effects of elevated H+, SO4-, NO3-, and NH4+ in simulated acid precipitation on the growth and chlorophyll content of 3 North American Sphagnum species. Bryologist 90:221–229

    CAS  Google Scholar 

  • Bain JT, Proctor MCF (1980) The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: some experimental evidence. New Phytol 86:393–400

    CAS  Google Scholar 

  • Ballesteros D, García-Sánchez MJ, Heredia MA, Felle H, Fernández JA (1998) Inorganic carbon acquisition in Riccia fluitans L. J Exp Bot 49:1741–1747

    CAS  Google Scholar 

  • Barko JW, Filbin GJ (1983) Influences of light and temperature on chlorophyll composition in submersed freshwater macrophytes. Aquat Bot 15:249–255

    CAS  Google Scholar 

  • Basile DV (1965) Growth, development and gemma formation in the liverwort Scapania nemorosa as influenced by L-arginine, L-histidine and L-glutamic acid. Am J Bot 52:443–454

    Google Scholar 

  • Bates J, Phoon X (2008) Salinity tolerance and survival of the rocky-seashore bryophyte Schistidium maritimum. In: Mohamed H, Bakar BB, Boyce AN, Yuen PLK (eds) Bryology in the new millennium: proceedings of the world bryology conference 2007, Kuala Lumpur, Malaysia. Institute of Biological Sciences, University of Malaya, Kuala Lumpur, pp 327–338

    Google Scholar 

  • Beever JE (1995) Studies of Fissidens (Bryophyta: Musci) in New Zealand: F. strictus Hook. f. and Wils. and F. berteroi (Mont.) C. Muell., with a discussion of aquatic adaptations. N Z J Bot 33:291–299

    Google Scholar 

  • Bendz G, Lööf LG, Martensson O (1968) Moss pigments. 8. The carotenoids of Fontinalis antipyretica L. ex Hedw. Acta Chem Scand 22:2215–2218

    PubMed  CAS  Google Scholar 

  • Benstead JP, Green AC, Deegan LA, Peterson BJ, Slavik K, Bowden WB, Huryn AD, Hershey AE (2007) Recovery of three Arctic stream reaches from experimental low-level nutrient enrichment. Freshw Biol 52:1077–1089

    Google Scholar 

  • Biehle G, Speck T, Spatz HC (1998) Hydrodynamics and biomechanics of the submerged water moss Fontinalis antipyretica – a comparison of specimens from habitats with different flow velocities. Bot Acta 111:42–50

    Google Scholar 

  • Blackman FF, Smith AM (1910) Experimental researches on vegetable assimilation and respiration. IX.- On assimilation in submerged water-plants, and its relation to the concentration of carbon dioxide and other factors. Proc R Soc Biol Sci Ser B 83:389–412

    Google Scholar 

  • Bode O (1940) Assimilation, Atmung und Plastidenfarbstoffe in verschiedenfarbigen Licht aufgezogenen Fontinalis-Pflanzen. Jahrb Wiss Bot 89:208–244

    CAS  Google Scholar 

  • Bolhár-Nordenkampf H (1970) Die Wirkung von Atrizin auf den pflanzenlich Gasstoffwechsel. Biochem Physiol Pflanzen 161:110–158

    Google Scholar 

  • Boros A (1925) Two fossil species of mosses from the diluvial lime tufa of Hungary. Bryologist 28:29–32

    Google Scholar 

  • Boston HL, Farmer AM, Madsen JD, Adams MS, Hurley JP (1991) Light-harvesting carotenoids in two deep-water bryophytes. Photosynthetica 25:61–66

    CAS  Google Scholar 

  • Bowden WB, Finlay JC, Maloney PE (1994) Long-term effects of PO4 fertilization on the distribution of bryophytes in an Arctic river. Freshw Biol 32:445–454

    CAS  Google Scholar 

  • Bowes G, Van TK, Garrard LA, Haller WT (1977) Adaptation to low light levels by Hydrilla. J Aquat Plant Manag 15:32–35

    CAS  Google Scholar 

  • Brown DH (1982) Mineral nutrition. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 383–444

    Google Scholar 

  • Burkholder PR (1959) Organic nutrition of some mosses growing in pure culture. Bryologist 62:6–15

    CAS  Google Scholar 

  • Burr GO (1941) Photosynthesis of algae and other aquatic plants. In: Needham JG (ed) Symposium on hydrobiology. University of Wisconsin Press, Madison, pp 163–181

    Google Scholar 

  • Carballeira A, Díaz S, Vázquez MD, López J (1998) Inertia and resilience in the responses of the aquatic bryophyte Fontinalis antipyretica Hedw. to thermal stress. Arch Environ Contam Toxicol 34:343–349

    PubMed  CAS  Google Scholar 

  • Carroll DM (2003) Bryophytes as indicators of water level and salinity change along the Northeast Cape Fear River. MS thesis, University of North Carolina at Wilmington

    Google Scholar 

  • Cattaneo A, Fortin L (2000) Moss distribution in streams of the Quebec Laurentian Mountains. Can J Bot 78:748–752

    Google Scholar 

  • Chambers PA, Kalff J (1985) Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can J Fish Aquat Sci 42:701–709

    Google Scholar 

  • Christmas M, Whitton BA (1998) Phosphorus and aquatic bryophytes in the Swale–Ouse river system, north-east England. 1. Relationship between ambient phosphate, internal N:P ratio and surface phosphatase activity. Sci Total Environ 110–111:389–399

    Google Scholar 

  • Clymo RS (1963) Ion exchange in Sphagnum and its relation to bog ecology. Ann Bot N S 27:309–324

    CAS  Google Scholar 

  • Clymo RS (1964) The origin of acidity in Sphagnum bogs. Bryologist 67:427–431

    Google Scholar 

  • Conboy DA, Glime JM (1971) Effects of drift abrasives on Fontinalis novae-angliae Sull. Castanea 36:111–114

    Google Scholar 

  • Conde-A’lvarez RM, Pérez-Rodríguez E, Altamirano M, Nieto JM, Abdala R, Figueroa FL, Flores-Moya A (2002) Photosynthetic performance and pigment content in the aquatic liverwort Riella helicophylla under natural solar irradiance and solar irradiance without ultraviolet light. Aquat Bot 73:47–61

    Google Scholar 

  • Croisetière L, Hare L, Tessier A (2001) Influence of current velocity on cadmium accumulation by an aquatic moss and the consequences for its use as a biomonitor. Environ Sci Technol 35:923–927

    PubMed  Google Scholar 

  • Cruz de Carvalho R (2009) Desiccation in the aquatic bryophyte Fontinalis antipyretica. In: XVII Simpósio Botânica Criptogâmica, 24 Sept 2009. Abstract http://lisboa.academia.edu/RicardoCruzdeCarvalho/Talks/36958/Desiccation_in_the_aquatic_bryophyte_Fontinalis_antipyretica. 17 Aug 2011

  • Cruz de Carvalho R, Branquinho C, da Marques Silva J (2008) Oxygen evolution and chlorophyll fluorescence under extreme desiccation in the aquatic bryophyte Fontinalis antipyretica. Photosynth Energy Sun 24:1425–1430

    Google Scholar 

  • Cruz de Carvalho R, Branquinho C, da Marques Silva J (2011) Physiological consequences of desiccation in the aquatic bryophyte Fontinalis antipyretica. Planta 234:195–205

    CAS  Google Scholar 

  • Czeczuga B (1980) Investigation on carotenoids in Embryophyta. I. Bryophyta. Bryologist 83:21–28

    CAS  Google Scholar 

  • Czeczuga B (1985) Investigations on carotenoids in Embryophyta. III. Representatives of the Hepaticae. Phyton 25:113–121

    CAS  Google Scholar 

  • Czeczuga B, Gutkowski R, Czerpak R (1982) Investigations of carotenoids in Embryophyta. II. Musci from the Antarctic. Nova Hedw 36:695–701

    Google Scholar 

  • Davey MC (1997) Effects of short-term dehydration and rehydration on photosynthesis and respiration by Antarctic bryophytes. Environ Exp Bot 37:187–198

    CAS  Google Scholar 

  • Dilks TJK (1976) Measurement of the carbon dioxide compensation point and rate of loss of 14CO2 in the light and dark in some bryophytes. J Exp Bot 27:98–104

    CAS  Google Scholar 

  • Dilks TJK, Proctor MCF (1975) Comparative experiments on temperature responses of bryophytes: assimilation, respiration and freezing damage. J Bryol 8:317–336

    Google Scholar 

  • Ellwood NTW, Whitton BA (2007) Phosphatase activities of the aquatic moss Warnstorfia fluitans (Hedw.) Loeske from an acidic stream in North-East England. Hydrobiologia 575:95–107

    CAS  Google Scholar 

  • Ellwood NTW, Haile SM, Whitton BA (2008) Aquatic plant nutrients, moss phosphatase activities and tissue composition in four upland streams in northern England. J Hydrol 350:246–260

    CAS  Google Scholar 

  • Emerson R, Lewis CM (1943) The dependence of the quantum yield of Chlorella photosynthesis on wave length of light. Am J Bot 30:165–178

    CAS  Google Scholar 

  • Englund G, Jonsson B-G, Malmqvist B (1997) Effects of flow regulation on bryophytes in north Swedish rivers. Biol Conserv 79:79–86

    Google Scholar 

  • Fabón G, Martínez-Abaigar J, Tomás R, Núñez-Olivera E (2010) Effects of enhanced UV-B radiation on hydroxycinnamic acid derivatives extracted from different cell compartments in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia. Physiol Plant 140:269–279

    PubMed  Google Scholar 

  • Farmer AM, Maberly SC, Bowes G (1986) Activities of carboxylation enzymes in freshwater macrophytes. J Exp Bot 37:1568–1573

    CAS  Google Scholar 

  • Farmer AM, Boston HL, Adams MS (1988) Photosynthetic characters of a deepwater bryophyte from a clear, oligotrophic lake in Wisconsin, USA. Int Ver Theor Angew Limnol Verh 23:1912–1915

    CAS  Google Scholar 

  • Fogg GE (1977) Aquatic primary production in the Antarctic. Proc R Soc Biol Sci Ser B 279:27–38

    Google Scholar 

  • Fornwall MD (1978) Primary productivity of Fontinalis duriaei Schimp. and its relation to seasonal changes in stream temperature. MS thesis, Michigan Technological University, Houghton, 121 pp

    Google Scholar 

  • Fornwall MD, Glime JM (1982) Cold and warm-adapted phases in Fontinalis duriaei Schimp. as evidenced by net assimilatory and respiratory responses to temperature. Aquat Bot 13:165–177

    Google Scholar 

  • Frahm J-P (1975) Toxitoleranzversuche an Wassermoosen. Gewass Abwass 57(58):59–66

    Google Scholar 

  • Fritz KM, Glime JM, Hribljan J, Greenwood JL (2009) Can bryophytes be used to characterize hydrologic permanence in forested headwater streams. Ecol Indic 9:681–692

    Google Scholar 

  • Frost-Christensen H, Sand-Jensen K (1992) The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. Oecologia 91:377–384

    Google Scholar 

  • Gaberscik A, Martincic A (1987) Seasonal dynamics of net photosynthesis and productivity of Sphagnum papillosum. Lindbergia 13:105–110

    Google Scholar 

  • Gellerman JL, Anderson WH, Schlenk H (1972) Highly unsaturated lipids of Mnium, Polytrichum, Marchantia and Matteuccia. Bryologist 75:550–557

    CAS  Google Scholar 

  • Glime JM (1971) Response of two species of Fontinalis to field isolation from stream water. Bryologist 74:383–386

    Google Scholar 

  • Glime JM (1984) Theories on adaptations to high light intensity in the aquatic moss Fontinalis. J Bryol 13:257–262

    Google Scholar 

  • Glime JM (1987a) Phytogeographic implications of a Fontinalis (Bryopsida) growth model based on temperature and flow conditions for six species. Mem N Y Bot Gard 45:154–170

    Google Scholar 

  • Glime JM (1987b) Growth model for Fontinalis duriaei based on temperature and flow conditions. J Hattori Bot Lab 62:101–109

    Google Scholar 

  • Glime JM, Acton DW (1979) Temperature effects on assimilation and respiration in the Fontinalis duriaei-periphyton association. Bryologist 82:382–392

    Google Scholar 

  • Glime JM, Rohwer F (1983) The comparative effects of ethylene and 1-amino-cyclopropane-1-carboxylic acid on two species of Fontinalis. J Bryol 12:611–616

    Google Scholar 

  • Glime JM, Vitt DH (1984) The physiological adaptations of aquatic Musci. Lindbergia 10:41–52

    Google Scholar 

  • Glime JM, Nissila PD, Trynoski SE, Fornwall MD (1979) A model for attachment of aquatic mosses. J Bryol 10:313–320

    Google Scholar 

  • Glime JM, Wetzel RG, Kennedy BJ (1982) The effects of bryophytes on succession from alkaline marsh to Sphagnum bog. Am Midl Nat 108:209–223

    Google Scholar 

  • Graham LE, Kim E, Arancibia-Avila P, Graham JM, Wilcox LW (2010) Evolutionary and ecophysiological significance of sugar utilization by the peat moss Sphagnum compactum (Sphagnaceae) and the common charophycean associates Cylindrocystis brebissonii and Mougeotia sp. (Zygnemataceae). Am J Bot 97:1485–1491

    PubMed  CAS  Google Scholar 

  • Gupta RK (1976) Soluble constituents and photosynthetic products biosynthesized from 14CO2 in leafy liverworts, Plagiochila asplenioides (L.) Dum. and Scapania undulata (L.) Dum. Indian J Exp Biol 14:595–598

    CAS  Google Scholar 

  • Hanson DT, Andrews TJ, Badger MR (2002) Variability of the pyrenoid-based CO2-concentrating mechanism in hornworts (Anthocerotophyta). Funct Plant Biol 29:407–416

    CAS  Google Scholar 

  • Harder R (1921) Kritische Versuche zu Blackmans Theorie der begrenzenden Faktoren bei der Kohlensaureassimilation. Jahrb Wiss Bot 60:531–571

    Google Scholar 

  • Harder R (1923) Bemerkungen über die variations-breite des Kompensationspunktes beim Gaswechsel der Pflanzen. Ber Deutsch Bot Gesell 41:194–198

    CAS  Google Scholar 

  • Hawes I, Anderson DT, Pollard WH (2002) Submerged aquatic bryophytes in Colour Lake, a naturally acidic polar lake with occasional year-round ice-cover. Arctic 55:380–388

    Google Scholar 

  • Hearnshaw GF, Proctor MCF (1982) The effect of temperature on the survival of dry bryophytes. New Phytol 90:221–228

    Google Scholar 

  • Hedenäs L (2001) Environmental factors potentially affecting character states in pleurocarpous mosses. Bryologist 104:72–91

    Google Scholar 

  • Hoddinott J, Bain J (1979) The influence of simulated canopy light on the growth of six acrocarpous moss species. Can J Bot 57:1236–1242

    Google Scholar 

  • Hoppe H-G, Kim S-J, Gocke K (1988) Microbial decomposition in aquatic environments: combined process of extracellular enzyme activity and substrate uptake. Appl Environ Microbiol 54:784–790

    PubMed  CAS  Google Scholar 

  • Huneck S (1983) Chemistry and biochemistry of bryophytes. In: Schuster RM (ed) New manual of bryology. Hattori Botanical Laboratory, Nichinan, pp 1–116

    Google Scholar 

  • Ikusima I (1965) Ecological studies on the productivity of aquatic plant communities 1. Measurement of photosynthetic activity. Bot Mag Tokyo 78:202–211

    Google Scholar 

  • Ikusima I (1966) Ecological studies on the productivity of aquatic plant communities 2. Seasonal changes in standing crop and productivity of a natural submerged community of Vallisneria denseserrulata. Bot Mag Tokyo 79:7–19

    Google Scholar 

  • James WO (1928) Experimental researches on vegetable assimilation and respiration. XIX. The effect of variations of carbon dioxide supply upon the rate of assimilation of submerged water plants. Proc R Soc Biol Sci Ser B 103:1–42

    CAS  Google Scholar 

  • Jenkins JT, Proctor MCF (1985) Water velocity, growth-form and diffusion resistances to photosynthetic CO2 uptake in aquatic bryophytes. Plant Cell Environ 8:317–323

    Google Scholar 

  • Johnson T (1978) Aquatic mosses and stream metabolism in a North Swedish River. Proceedings: congress in Denmark 1977 Part 3. Ver Int Ver Theor Angew Limnol 20:1471–1477

    Google Scholar 

  • Jones RC, Walti K, Adams MS (1983) Phytoplankton as a factor in decline of the submersed macrophyte Myriophyllum spicatum L. in Lake Wingra, Wisconsin. Hydrobiologia 107:213–219

    Google Scholar 

  • Kang BG, Burg SP (1972) Involvement of ethylene in phytochrome-mediated carotenoid synthesis. Plant Physiol 49:631–633

    PubMed  CAS  Google Scholar 

  • Karunen P, Aro EM (1979) Fatty acid composition of polar lipids in Ceratodon purpureus and Pleurozium schreberi. Physiol Plant 45:265–269

    CAS  Google Scholar 

  • Keeley JE, DeNiro MJ, Sternberg LO (1986) The use of stable isotopes in the study of photosynthesis in freshwater plants. Aquat Bot 26:213–223

    CAS  Google Scholar 

  • Kershaw KA, Webber MR (1986) Seasonal changes in the chlorophyll content and quantum efficiency of the moss Brachythecium rutabulum. J Bryol 14:151–158

    Google Scholar 

  • Kielland K (1997) Role of free amino acids in the nitrogen economy of Arctic cryptogams. Ecoscience 4:75–79

    Google Scholar 

  • Koskimies-Soininen K, Nyberg H (1991) Effects of temperature and light on the glycolipids of Sphagnum fimbriatum. Phytochemistry 30:2529–2536

    CAS  Google Scholar 

  • Kudoh S, Kashino Y, Imura S (2003) Ecological studies of aquatic moss pillars in Antarctic lakes. 3. Light response and chilling and heat sensitivity of photosynthesis. Polar Biol 16:33–42

    Google Scholar 

  • Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14:89–136

    Google Scholar 

  • LaCroix JJ (1996) Phenolics from Fontinalis antipyretica Hedw. and light as causes of differential distribution of Asellus militaris Hay in Gooseneck Creek. Unpublished MS thesis, Michigan Technological University, Houghton

    Google Scholar 

  • Larcher W (1983) Physiological plant ecology, corrected printing of the second printing. Springer, New York

    Google Scholar 

  • Li Y, Glime JM, Drummer TD (1993) Effects of phosphorus on the growth of Sphagnum magellanicum Brid. and S. papillosum Lindb. Lindbergia 18:25–30

    Google Scholar 

  • Lodge E (1960) Studies of variation in British material of Drepanocladus fluitans and Drepanocladus exannulatus. II. An experimental study of the variation. Svensk Bot Tidskr 54:387–393

    Google Scholar 

  • Loeske L (1922) Bryologische Notizen. Herbarium 61:121–123; 62:129–132

    Google Scholar 

  • Loeske L (1926) Der Einfluss des Wassers auf Papillen und Mamillen. Folia Cryptogam Z Erforsch ungarischen Kryptogamenflora 1:215–219

    Google Scholar 

  • López J, Carballiera J (1989) A comparative study of pigment contents and response to stress in five species of aquatic bryophytes. Lindbergia 15:188–194

    Google Scholar 

  • Lovalvo D, Clingenpeel SR, McGinnis S, Macur RE, Varley JD, Inskeep WP, Glime J, Nealson K, McDermott TR (2010) A geothermal-linked biological oasis in Yellowstone Lake, Yellowstone National Park, Wyoming. Geobiology 8:327–336

    PubMed  CAS  Google Scholar 

  • Maberly SC (1985a) Photosynthesis by Fontinalis antipyretica. I. Interactions between photon irradiance, concentration of carbon dioxide and temperature. New Phytol 100:127–140

    Google Scholar 

  • Maberly SC (1985b) Photosynthesis by Fontinalis antipyretica. II. Assessment of environmental factors limiting photosynthesis and production. New Phytol 100:141–155

    CAS  Google Scholar 

  • Madsen TV, Enevoldsen HO, Jorgensen TB (1993) Effects of water velocity on photosynthesis and dark respiration in submerged stream macrophytes. Plant Cell Environ 16:317–322

    Google Scholar 

  • Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603

    PubMed  CAS  Google Scholar 

  • Martin CE, Adamson VJ (2001) Photosynthetic capacity of mosses relative to vascular plants. J Bryol 23:319–323

    Google Scholar 

  • Martin CE, Churchill SP (1982) Chlorophyll concentrations and a/b ratios in mosses collected from exposed and shaded habitats in Kansas. J Bryol 12:297–304

    Google Scholar 

  • Martinez-Abaigar J, Núñez-Olivera E (1998) Ecophysiology of photosynthetic pigments in aquatic bryophytes. In: Bates JW, Ashton NW, Duckett JG (eds) Bryology for the twenty-first century. Maney Publishing and the British Bryological Society, Leeds, pp 277–292

    Google Scholar 

  • Mártínez-Abaigar J, Núñez-Olivera E, Sánchez-Díaz M (1993) Effects of organic pollution on transplanted aquatic bryophytes. J Bryol 17:553–566

    Google Scholar 

  • Mártínez-Abaigar J, Núñez-Olivera E, Sánchez-Díaz M (1994) Seasonal changes in photosynthetic pigment composition of aquatic bryophytes. J Bryol 18:97–113

    Google Scholar 

  • Martínez-Abaigar J, Nuñez-Olivera E, Beaucourt N, Garcia-Alvaro MA, Tomas R, Arróniz M (2003) Different physiological responses of two aquatic bryophytes to enhanced ultraviolet-B radiation. J Bryol 25:17–30

    Google Scholar 

  • McCall KK, Martin CE (1991) Chlorophyll concentrations and photosynthesis in three forest understory mosses in northeastern Kansas. Bryologist 94:25–29

    CAS  Google Scholar 

  • McIntire CD, Phinney HK, Larson GL, Buktenica M (1994) Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon. Northwest Sci 68(1):11–21

    Google Scholar 

  • McKane R, Johnson L, Shaver G, Nadelhoffer K, Fry B, Rastetter E, Giblin A, Laundre J (1993) Differentiation in uptake of 15N by depth, season, and chemical form in an arctic tussock tundra plant community. In: Proceedings of the 78th annual ESA meeting, 31 July–4 Aug 1993. Bull Ecol Soc Amer Program and Abstracts, vol 74(Suppl 2), p 354

    Google Scholar 

  • McMillan C, Phillips RC (1979) Differentiation in habitat response among populations of new world seagrasses. Aquat Bot 7:185–196

    CAS  Google Scholar 

  • Meyer JL (1979) The role of sediments and bryophytes in phosphorus dynamics in a headwater stream ecosystem. Limnol Oceanogr 24:365–375

    CAS  Google Scholar 

  • Miler O, Albayrak I, Nikora V, Crane T, O’Hare M (2010) Biomechanics of aquatic plants and its role in flow-vegetation interactions. In: Dittrich A, Kill K, Aberle J, Geisenhainer P (eds) River flow 2010. Bundesanstalt fur Wasserbau, Karlsruhe, pp 245–251

    Google Scholar 

  • Miyazaki T, Satake K (1985) In situ measurements of uptake of inorganic carbon and nitrogen by the aquatic liverworts Jungermannia vulcanicola Steph. and Scapania undulata (L.) Dum. in an acid stream, Kashiranashigawa, Japan. Hydrobiologia 124:29–34

    CAS  Google Scholar 

  • Naiman RJ (1983) The annual pattern and spatial distribution of aquatic oxygen metabolism in boreal forest watersheds. Ecol Monogr 53:73–94

    Google Scholar 

  • Naiman RJ, Sedell JR (1980) Relationships between metabolic parameters and stream order in Oregon. Can J Fish Aquat Sci 37:834–847

    Google Scholar 

  • Norris L, Norris RE, Calvin M (1954) A survey of the rates and products of short-term photosynthesis in plants of 9 phyla. Lawrence Berkeley National Laboratory, 22 pp. http://escholarship.org/uc/item/3dp3827f. 17 Aug 2011

  • Núñez-Olivera E, Martínez-Abaigar J, Tomás R, Beaucourt N, Arróniz-Crespo M (2004) Influence of temperature on the effects of artificially enhanced UV-B radiation on aquatic bryophytes under laboratory conditions. Photosynthetica 42:201–212

    Google Scholar 

  • Núñez-Olivera E, Arróniz-Crespo M, Martínez-Abaigar J, Tomás R, Beaucourt N (2005) Assessing the UV-B tolerance of sun and shade samples of two aquatic bryophytes using short-term tests. Bryologist 108:435–448

    Google Scholar 

  • Núñez-Olivera E, Otero S, Tomás R, Martínez-Abaigar J (2009) Seasonal variations in UV-absorbing compounds and physiological characteristics in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia over a 3-year period. Physiol Plant 136:73–85

    PubMed  Google Scholar 

  • Núñez-Olivera E, Otero S, Tomás R, Fabón G, Martínez-Abaigar J (2010) Cyclic environmental factors only partially explain the seasonal variability of photoprotection and physiology in two mosses from an unforested headwater stream. Bryologist 113:277–291

    Google Scholar 

  • Ochyra R, Lightowlers PJ (1988) The south Georgian moss flora: Vittia. Br Antarct Surv Bull 80:121–127

    Google Scholar 

  • Osmond CB, Valanne N, Haslam SM, Votila P, Roksandic Z (1981) Comparisons of δ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland: some implications for photosynthetic processes in aquatic plants. Oecologia 50:117–124

    Google Scholar 

  • Otero S, Núñez-Olivera E, Martínez-Abaigar J, Tomás R, Arróniz-Crespo M, Beaucourt N (2006) Effects of cadmium and enhanced UV radiation on the physiology and the concentration of UV-absorbing compounds of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia. Photochem Photobiol Sci 5:760–769

    PubMed  CAS  Google Scholar 

  • Patidar KC, Solanki CM, Kaul A (1986) Chlorophyll concentration and a/b ratios in response to habitats in three species of Riccia. Yushania 3(4):1–4

    Google Scholar 

  • Peñuelas J (1984) Pigments of aquatic mosses of the river Muga, NE Spain, and their response to water pollution. Lindbergia 10:127–132

    Google Scholar 

  • Peñuelas J (1985) HCO3 as an exogenous carbon source for aquatic bryophytes Fontinalis antipyretica and Fissidens grandifrons. J Exp Bot 36:441–448

    Google Scholar 

  • Peñuelas J, Murillo J, Azcón-Bieto J (1988) Actual and potential dark respiration rates and different electron transport pathways in freshwater aquatic plants. Aquat Bot 30:115–128

    Google Scholar 

  • Plaetzer H (1917) Untersuchungen über die Assimilation und Atmung von Wasserpflanzen. Phys Med Gesel (Wurzburg) 45:31–101

    CAS  Google Scholar 

  • Priddle J (1979) Morphology and adaptation of aquatic mosses in an Antarctic lake. J Bryol 10:517–531

    Google Scholar 

  • Priddle J (1980) The production ecology of benthic plants in some Antarctic lakes. 1. In situ production studies. J Ecol 68:141–153

    Google Scholar 

  • Prins HBA, Elzenga JTM (1989) Bicarbonate utilization: function and mechanism. Aquat Bot 34:59–83

    CAS  Google Scholar 

  • Proctor MCF (1984) Structure and ecological adaptation. In: Dyer AF, Duckett JG (eds) The experimental biology of bryophytes. Academic, New York, pp 9–37

    Google Scholar 

  • Proctor MCF, Smirnoff N (2011) Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching? Physiol Plant 141:130–140

    PubMed  CAS  Google Scholar 

  • Rastorfer JR (1971) Effects of temperature on carbon dioxide compensation points of the moss Drepanocladus uncinatus. Antarct J U S 6(5):162–163

    Google Scholar 

  • Raven JA (1991) Implications of inorganic carbon utilization: ecology, evolution, and geochemistry. Can J Bot 69:908–924

    CAS  Google Scholar 

  • Raven JA, MacFarlane JJ, Griffiths H (1987) The application of carbon isotope techniques. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. British Ecological Society Special Symposium, Blackwell, Oxford, pp 129–144

    Google Scholar 

  • Raven JA, Johnson AM, Newman JR, Scrimgeour CM (1994) Inorganic carbon acquisition by aquatic photolithotrophs of the Dighty Burn, Angus, UK: uses and limitations of natural abundance measurements of carbon isotopes. New Phytol 127:271–286

    CAS  Google Scholar 

  • Raven JA, Griffiths H, Smith EC, Vaughn KC (1998) New perspectives in the biophysics and physiology of bryophytes. In: Bates JW, Ashton NW, Duckett JG (eds) Bryology in the twenty-first century. Maney Publishing and the British Bryological Society, Leeds, pp 261–275

    Google Scholar 

  • Rice SK (1995) Patterns of allocation and growth in aquatic Sphagnum species. Can J Bot 73:349–359

    Google Scholar 

  • Rice SK, Schuepp PH (1995) On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae). Am J Bot 82:833–846

    Google Scholar 

  • Riis T, Sand-Jensen K (1997) Growth reconstruction and photosynthesis of aquatic mosses: influence of light, temperature and carbon dioxide at depth. J Ecol 85:359–372

    Google Scholar 

  • Rincòn E (1993) Growth responses of six bryophyte species to different light intensities. Can J Bot 71:661–665

    Google Scholar 

  • Robel RJ (1961) Water depth and turbidity in relation to growth of sago pond weed. J Wildl Manag 25:436–438

    Google Scholar 

  • Rosswall T, Granhall U (1980) Nitrogen cycling in a subarctic ombrotrophic mire. In: Sonesson M (ed) Ecology of a subarctic mire. Ecol Bull (Stockholm) 30:209–234

    Google Scholar 

  • Rudolph HJ, Voigt JU (1986) Effects of NH4+-N and NO3-N on growth and metabolism of Sphagnum magellanicum. Physiol Plant 66:339–343

    Google Scholar 

  • Ruttner F (1947) Zur Frage der Karbonatassimilation der Wasserpflanzen, I. Österr Bot Zeits 94:265–294

    Google Scholar 

  • Ruttner F (1955) Zur Okologie tropischer Wassermoose. Arch Hydrobiol 21(Suppl):343–381

    Google Scholar 

  • Salvucci ME, Bowes G (1981) Induction of reduced photorespiration activity in submersed and amphibious aquatic macrophytes. Plant Physiol 67:335–340

    PubMed  CAS  Google Scholar 

  • Sand-Jensen K, Madsen TV (1991) Minimum light requirements of submerged freshwater macrophytes in laboratory growth experiments. J Ecol 79:749–764

    Google Scholar 

  • Sandquist DR, Keeley JE (1990) Carbon uptake characteristics in two high elevation populations of the aquatic CAM plant Isoetes bolanderi (Isoetacae)[sic]. Am J Bot 77:682–688

    CAS  Google Scholar 

  • Sanford GR, Bayer DE, Knight AW (1974) An evaluation of environmental factors affecting the distribution of two aquatic mosses in the Sacramento River near Anderson, California University Departments of Botany, Water Science Engineering

    Google Scholar 

  • Schmidt-Stohn G (1977) Aenderungen der plastidenpigmente bei Sphagnum magellanicum Brid. in Abhaengigkeit von Standort, Verfaerbungsgrad und Alter. Z Pflanzenphysiol 81:289–303

    CAS  Google Scholar 

  • Schuler JF, Diller VM, Fulford M, Kerstein HJ (1955) Plant Physiol 30:478–482

    PubMed  CAS  Google Scholar 

  • Schuurkes JAAR, Kok CJ, Den Hartog C (1986) Ammonium and nitrate uptake by aquatic plants from poorly buffered and acidified waters. Aquat Bot 24:131–146

    Google Scholar 

  • Schwarz A-M, Markager S (1999) Light absorption and photosynthesis of a benthic moss community: importance of spectral quality of light and implications of changing light attenuation in the water column. Freshw Biol 42:609–623

    Google Scholar 

  • Schwoerbel J, Tillmanns GC (1964) Untersuchungen über die Stoffwechseldynamik in Fliebgewassern. Arch Hydrobiol 28(Suppl):259–267

    Google Scholar 

  • Schwoerbel J, Tillmanns GC (1972) Adaptation to ammonia in situ by submerged macrophytes. Arch Hydrobiol 42(Suppl):139–141

    Google Scholar 

  • Schwoerbel J, Tillmanns GC (1974) Assimilation of nitrogen from the medium and nitrate reductase activity in submerged macrophytes: Fontinalis antipyretica L. Arch Hydrobiol 47(Suppl):282–294

    CAS  Google Scholar 

  • Schwoerbel J, Tillmanns GC (1977) Uptake of nitrate from the water and activity of nitrate reductase by Fontinalis antipyretica L. under light and dark conditions. Arch Hydrobiol 48(Suppl):412–423

    CAS  Google Scholar 

  • Sharma KK, Diller VM, Fulford M (1960) Studies on the growth of Haplomitrium. II. Media containing amino acids. Bryologist 63:203–212

    Google Scholar 

  • Shaw AJ, Allen B (2000) Phylogenetic relationships, morphological incongruence, and geographic speciation in the Fontinalaceae (Bryophyta). Mol Phylogenet Evol 16:225–237

    PubMed  CAS  Google Scholar 

  • Simola LK (1975) The effect of several protein amino acids and some inorganic nitrogen sources on the growth of Sphagnum nemoreum. Physiol Plant 35:194–199

    CAS  Google Scholar 

  • Simola LK (1979) Dipeptide utilization by Sphagnum fimbriatum. J Hattori Bot Lab 46:49–54

    CAS  Google Scholar 

  • Smith EC, Griffiths H (1996) The occurrence of the chloroplast pyrenoid is correlated with the activity of a CO2-concentrating mechanism and carbon isotope discrimination in lichens and bryophytes. Planta 198:6–16

    CAS  Google Scholar 

  • Søndergaard M, Sand-Jensen K (1979) The delay in 14C fixation rates by three submerged macrophytes, a source of error in the 14C technique. Aquat Bot 6:111–119

    Google Scholar 

  • Soudzilovskaia NA, Cornelissen JHC, During HJ, van Logtestijn RSP, Lang SI, Aerts R (2010) Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Ecology 91:2716–2726

    PubMed  CAS  Google Scholar 

  • Spence DHN (1976) Light and plant response in freshwater. In: Evans RB, Rockham O (eds) Light as an ecological factor: II. 16th symposium of the British Ecological Society, March 1974. Blackwell Scientific Publications, Oxford, pp 93–133

    Google Scholar 

  • Spence DHN, Dale HM (1978) Variations in the shallow water form of Potamogeton richardsonii induced by some environmental factors. Freshw Biol 8:251–268

    Google Scholar 

  • Spitale D, Petraglia A (2010) Palustriella falcata (Brid.) Hedenäs (Amblystegiaceae, Bryopsida) with pluristratose lamina: morphological variability of specimens in springs of the Italian Alps. Plant Syst Evol 286:59–68

    Google Scholar 

  • Steeman Nielsen E (1947) Photosynthesis of aquatic plants with special reference to the carbon source. Dansk Bot Ark 12(8):1–71

    Google Scholar 

  • Steeman Nielsen E, Kristiansen J (1949) Carbonic anhydrase in submersed autotrophic plants. Physiol Plant 2:325–331

    Google Scholar 

  • Stephenson SL, Studlar SM, McQuattie CJ, Edwards PJ (1995) Plant and environment interactions. Effects of acidification on bryophyte communities in West Virginia mountain streams. J Environ Qual 24:116–125

    CAS  Google Scholar 

  • Taylor AO, Jesper NM, Christeller JT (1972) Plants under climatic stress. III. Low temperature, high light effects on photosynthetic products. Plant Physiol 47:798–802

    Google Scholar 

  • Titus JE, Wagner DJ, Stephens MD (1983) Contrasting water relations of photosynthesis for two Sphagnum mosses. Ecology 64:1109–1115

    Google Scholar 

  • Tremp H (2003) Ecological traits of aquatic bryophytes and bioindication. http://www.uni-hohenheim.de/www320/german/homepages/horst/image/pdfs/aquatic_bryophytes.pdf. 31 Oct 2003

  • Tuba Z (1987) Light, temperature and desiccation responses of CO2-exchange in the desiccation-tolerant moss, Tortula ruralis. Symp Biol Hung 35:137–149

    Google Scholar 

  • Ueno T, Kanda H (2006) Photosynthetic response of the arctic semi-aquatic moss Calliergon giganteum to water content. Aquat Bot 85:241–243

    Google Scholar 

  • Valanne N (1984) Photosynthesis and photosynthetic products in mosses. In: Dyer AF, Duckett JG (eds) The experimental biology of bryophytes. Academic, New York, pp 257–274

    Google Scholar 

  • Vanderpoorten A (2000) Hydrochemical determinism and molecular systematics in the genus Amblystegium (Musci). Application to the biomonitoring of surface waters. Dissertation de docteur en sciences agronomiques et ingénierie biologique, Faculté Universitaire des Sciences Agronomiques de Gembloux, Gembloux, Belgium

    Google Scholar 

  • Vanderpoorten A, Klein J-P, Stieperaere H, Trémolières M (1999) Variations of aquatic bryophyte assemblages in the Rhine Rift related to water quality. I. The Alsatian Rhine floodplain. J Bryol 21:17–23

    Google Scholar 

  • Vitt DH, Glime JM, LaFarge-England C (1986) Bryophyte vegetation and habitat gradients of montane streams in western Canada. Hikobia 9:367–385

    Google Scholar 

  • Wagner DH, Christy JA, Larson DW (2000) Deep-water bryophytes from Waldo Lake, Oregon. Lake Reserv Manag 16:91–99

    Google Scholar 

  • Watson W (1919) The bryophytes and lichens of fresh-water. J Ecol 7:71–83

    Google Scholar 

  • Westlake DF (1971) Water plants and the aqueous environment. Biol Hum Aff 36:10

    Google Scholar 

  • Westlake DF (1981) Temporal changes in aquatic macrophytes and their environment. In: Hoestlandt H (ed) Dynamique de populations et qualité de l’eau, Actes Symp Inst Ecol Bassin Somme, Chantilly, 1979. Gauthier-Villars, Paris, pp 110–138

    Google Scholar 

  • Wetzel RG, Brammer ES, Lindström K, Forsberg C (1985) Photosynthesis of submersed macrophytes in acidified lakes: II. Carbon limitation and utilization of benthic CO2 sources. Aquat Bot 22:107–112

    Google Scholar 

  • Wheeler WN (1988) Algal productivity and hydrodynamics – a synthesis. Prog Phycol Res 6:23–58

    CAS  Google Scholar 

  • Whitton BA, Al-Shehri AM, Ellwood NTW, Turner BL (2005) Chapter 10. Ecological aspects of phosphatase activity in Cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, pp 205–242

    Google Scholar 

  • Wiginton JR, McMillan C (1979) Chlorophyll composition under controlled light conditions as related to the distribution of seagrasses in Texas and the U.S. Virgin Islands. Aquat Bot 6:171–184

    CAS  Google Scholar 

  • Wilkinson SM, Ormerod SJ (1994) The effect of catchment liming on bryophytes in upland Welsh streams, with an assessment of the communities at risk. Aquat Conserv Mar Freshw Ecosyst 4(4):297–306

    Google Scholar 

  • Yang C-M, Hsu J-C, Shih C-F (1994) Response of chlorophyll a/b ratios in Yuan-Yang Lake bryophytes to the alteration of light intensity. Proc Natl Sci Counc Repub China Part B, Life Sci 18(3):134–137

    Google Scholar 

  • Yeoh H-H, Badger MR, Watson L (1981) Variations in kinetic properties of ribulose-1,5-bisphosphate carboxylases among plants. Plant Physiol 67:1151–1155

    PubMed  CAS  Google Scholar 

  • Ylla I, Romaní AM, Sabater S (2007) Differential effects of nutrients and light on the primary production of stream algae and mosses. Fundam Appl Limnol/Arch Hydrobiol 170:1–10

    CAS  Google Scholar 

  • Zastrow E (1934) Experimentelle Studien aber die Anpassung von Wasser-und Sumpfmoosen. Pflanzenforschung 17:1–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice M. Glime .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glime, J.M. (2014). Photosynthesis in Aquatic Bryophytes. In: Hanson, D., Rice, S. (eds) Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6988-5_12

Download citation

Publish with us

Policies and ethics