Skip to main content

Temperature Sensitivity of Canopy Photosynthesis Phenology in Northern Ecosystems

  • Chapter
  • First Online:
Book cover Phenology: An Integrative Environmental Science

Abstract

Northern Hemisphere terrestrial ecosystems have been recognized as areas with large carbon uptake capacity and sinks and are sensitive to temperature change. However, the temperature sensitivity of ecosystem carbon uptake phenology in different biomes of northern ecosystems has not been well explored. In this study, based on our previous effort in characterizing canopy photosynthesis phenology indices, we analyzed how these phenology indices responded to temperature changes by using spatial temperature variability in the temperate and boreal ecosystems in the north hemisphere. Eddy covariance flux measurements of canopy photosynthesis were used to examine the temperature sensitivity of canopy photosynthesis phenology in different biomes and seasons (spring and autumn). Over all the 68 sites, the upturning day, peak recovery day, peak recession day, and senescence day of canopy photosynthesis were all sensitive to mean annual air temperature. Sites with higher mean annual air temperature had earlier carbon uptake and peak recovery day, but later ending of carbon uptake and peak recession day. As a consequence, effective growing season length was linearly increased with temperature for all the biomes. Spring phenology indices were more sensitive to temperature change than fall phenology. Besides phenology, peak canopy photosynthesis capacity was also linearly increased with temperature, and contributed even more to annual carbon assimilation changes than growing season length. These findings suggest a predominant temperature controls on annual carbon assimilation in northern ecosystems by changing both canopy photosynthesis phenology and physiology. The temperature sensitivity of canopy photosynthesis phenology and physiology indices revealed in this study are helpful to develop better models to predict impacts of global climate change on vegetation activities.

Equal contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldocchi D (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9(4):479–492

    Article  Google Scholar 

  • Baldocchi D (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  CAS  Google Scholar 

  • Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol Model 142(1–2):155–184

    Article  CAS  Google Scholar 

  • Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, KTP U, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Barr AG, Black TA, Hogg EH, Kljun N, Morgenstern K, Nesic Z (2004) Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric Forest Meteorol 126(3–4):237–255. doi:10.1016/j.agrformet.2004.06.011

    Article  Google Scholar 

  • Barr A, Black A, McCaughey H (2009) Climatic and phenological controls of the carbon and energy balances of three contrasting boreal forest ecosystems in western Canada. In: Noormets A (ed) Phenology of ecosystem processes. Springer Science, New York

    Google Scholar 

  • Black TA, Chen WJ, Barr AG, Arain MA, Chen Z, Nesic Z, Hogg EH, Neumann HH, Yang PC (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys Res Lett 27(9):1271–1274

    Article  Google Scholar 

  • Churkina G, Schimel D, Braswell BH, Xiao XM (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biol 11(10):1777–1787

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365. doi:10.1016/j.tree.2007.04.003

    Article  PubMed  Google Scholar 

  • Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Global Change Biol 17(2):886–897. doi:10.1111/j.1365-2486.2010.02281.x

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biol 12(4):731–750. doi:10.1111/j.1365-2486.2006.01113.x

    Article  Google Scholar 

  • Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guomundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw KT, Pilegaard K, Rannik U, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agr Forest Meteorol 113(1–4):53–74. doi:Pii S0168-1923(02)00102-8

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271(5255):1576–1578

    Article  CAS  Google Scholar 

  • Groisman PY, Karl TR, Knight RW (1994) Observed impact of snow cover on the heat-balance and the rise of continental spring temperatures. Science 263(5144):198–200

    Article  PubMed  CAS  Google Scholar 

  • Gu L, Post WE, Baldocchi D, Black TA, Verma SB, Vesala T, Wofsy SC (2003) Phenology of vegetation photosynthesis. Phenology: an integrative environmental science, vol 39. Kluwer Academic Publishers, Dordrecht/Boston

    Google Scholar 

  • Gu L, Post WM, Baldocchi DD, Black TA, Suyker AE, Verma SB, Vesala T, Wofsy SC (2009) Characterizing the seasonal dynamics of plant community photosynthesis across a range of vegetation types. Phenology of ecosystem processes. Springer, Dordrecht/New York

    Google Scholar 

  • Hu J, Moore DJP, Burns SP, Monson RK (2010) Longer growing seasons lead to less carbon sequestration by a subalpine forest. Global Change Biol 16(2):771–783

    Article  Google Scholar 

  • Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44(2):67–75

    Article  PubMed  CAS  Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agr Forest Meteorol 137(1–2):1–14. doi:10.1016/j.agrformet.2006.03.006

    Article  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397(6721):659

    Article  CAS  Google Scholar 

  • Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui DF, Jarvis AJ, Kattge J, Noormets A, Stauch VJ (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agr Forest Meteorol 147(3–4):209–232. doi:10.1016/j.agrformet.2007.08.011

    Article  Google Scholar 

  • Monson RK, Sparks JP, Rosenstiel TN, Scott-Denton LE, Huxman TE, Harley PC, Turnipseed AA, Burns SP, Backlund B, Hu J (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 146(1):130–147. doi:10.1007/s00442-005-0169-2

    Article  PubMed  Google Scholar 

  • Morin X, Viner D, Chuine I (2008) Tree species range shifts at a continental scale: new predictive insights from a process-based model. J Ecol 96(4):784–794. doi:10.1111/j.1365-2745.2008.01369.x

    Article  Google Scholar 

  • Niu SL, Luo YQ, Fei SF, Montagnani L, Bohrer G, Janssens IA, Gielen B, Rambal S, Moors E, Matteucci G (2011) Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biol 17(10):3102–3114. doi:10.1111/j.1365-2486.2011.02459.x

    Article  Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4):571–583

    Article  CAS  Google Scholar 

  • Penuelas J, Filella I (2001) Phenology – responses to a warming world. Science 294(5543):793–795

    Article  PubMed  CAS  Google Scholar 

  • Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochem Cycles 21(3):1–11. doi:10.1029/2006gb002888

    Article  Google Scholar 

  • Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr A, Chen AP, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451(7174):49–U43. doi:10.1038/Nature06444

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol 12(2):343–351. doi:10.1111/j.1365-2486.2005.01097.x

    Article  Google Scholar 

  • Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci USA 104(1):198–202

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Luedeling E, Xu J (2011) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci USA 45:1–6. doi:10.1073/pnas.1012490107

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Terrestrial Carbon Program at the Office of Science, US Department of Energy, Grants DE-FG02-006ER64317 and DE-FG02-01ER63198 and US National Science Foundation (NSF) grant DEB 0444518, DEB 0743778, DEB 0840964, DBI 0850290, and EPS 0919466 to YL. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuli Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Niu, S., Fu, Y., Gu, L., Luo, Y. (2013). Temperature Sensitivity of Canopy Photosynthesis Phenology in Northern Ecosystems. In: Schwartz, M. (eds) Phenology: An Integrative Environmental Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6925-0_27

Download citation

Publish with us

Policies and ethics