Skip to main content

Nanomechanical Properties and Deformation Mechanism in Metals, Oxides and Alloys

  • Chapter
  • First Online:
Nanomechanical Analysis of High Performance Materials

Abstract

Metals, oxides and alloys are widely used in transport and industry-engineering applications, due to their functionality. In this work, the nanomechanical properties (namely hardness and elastic modulus) and nanoscale deformation of metals, oxides and alloys (elastic and plastic deformation at certain applied loads) are investigated, together with pile-up/sink-in deformation mechanism analysis, subjected to identical condition parameters, by a combined Nanoindenter—Scanning Probe Microscope system. The study of discrete events including the onset of dislocation plasticity is recorded during the nanoindentation test (extraction of high-resolution load–displacement data). A yield-type pop-in occurs upon low applied load representing the start of phase transformation, monitored through a gradual slope change in the load–displacement curve. The ratio of surface hardness to hardness in bulk is investigated, revealing a clear higher surface hardness than bulk for magnesium alloys, whereas lower surface hardness than bulk for aluminium alloys; for metals and oxides, the behavior varied. The deviation from the case of Young’s modulus being equal to reduced modulus is analyzed, for all three categories of materials, along with pile-up/sink in deformation mechanism. Evidence of indentation size effect is found and quantified for all three categories of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aifantis KE, Konstantinidis AA (2009) Hall-Petch revisited at the nanoscale. Mater Sci Eng, B 163:139–144

    Article  Google Scholar 

  • Barrett CR, Nix WD, Tetelman AS (1973) The principles of engineering materials. Printice-Hall Incorporation, New Jersey

    Google Scholar 

  • Bei H, George EP, Hay JL, Pharr GM (2005) Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys Rev Lett 95(045501):1–4

    Google Scholar 

  • Bei H, Gao YF, Shim S, George EP, Pharr GM (2008) Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys Rev B 77(6060103):1–4

    Google Scholar 

  • Bridgman PW (1949) The physics of high pressure. Bell, London

    Google Scholar 

  • Callister WD (1990) Materials science and engineering. Wiley, New York

    Google Scholar 

  • Cavaliere P (2009) Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int J Fatigue 31(10):1476–1489

    Article  Google Scholar 

  • Charitidis CA (2010) Nanomechanical and nanotribological properties of carbon-based thin films: A review. Int J Refract Metal Hard Mater 28(1):51–70

    Article  Google Scholar 

  • Charitidis CA, Dragatogiannis DA, Koumoulos EP, Kartsonakis IA (2012) Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation. Mater Sci Eng, A 540:226–234

    Article  Google Scholar 

  • Cheng YT, Cheng CM (1998) Relationships between hardness, elastic modulus, and the work of indentation. Appl Phys Lett 73(5):614–616

    Article  Google Scholar 

  • Cheng YT, Li Z, Cheng CM (2002) Scaling relationships for indentation measurements. Philos Mag A 82(10):1822–1829

    Article  Google Scholar 

  • Chiu YL, Ngan AHW (2002) Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater 50(6):1599–1611

    Article  Google Scholar 

  • Cottrell AH (1953) Dislocations and plastic flow in crystals. Clarendon, Oxford

    MATH  Google Scholar 

  • Cottrell AH (1990) Advances in physical metallurgy, In: Charles JA, Smith GC (eds) Institute of metals, London

    Google Scholar 

  • Domnich V, Gogotsi Y (2002) Phase transformations in silicon under contact loading. Rev Adv Mater Sci 3:1–36

    Article  Google Scholar 

  • Fischer-Cripps AC (2004) A simple phenomenological approach to nanoindentation creep. Mater Sci Eng A 385(1–2):74–82

    Google Scholar 

  • Gaillard Y, Tromas C, Woirgard J (2006) Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in MgO. Acta Mater 54:1409–1417

    Article  Google Scholar 

  • Ge D, Domnich V, Juliano T, Stach EA, Gogotsi Y (2004) Structural damage in boron carbide under contact loading. Acta Mater 52:3921–3927

    Article  Google Scholar 

  • Gerberich WW, Nelson JC, Lilleodden ET, Anderson P, Wyrobek JT (1996) Indentation induced dislocation nucleation: the initial yield point. Acta Mater 44(9):3585–3598

    Article  Google Scholar 

  • Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29

    Article  Google Scholar 

  • Gogotsi YG, Domnich V, Dub SN, Kailer A, Nickel KG (2000) Cyclic nanoindentation and raman microspectroscopy study of phase transformations in semiconductor. J Mater Res 15:871–879

    Article  Google Scholar 

  • Göken M, Kempf M, Nix WD (2001) Hardness and modulus of the lamellar microstructure in PST-TiAl studied by nanoindentations and AFM. Acta Mater 49(5):901–903

    Article  Google Scholar 

  • Greaves GN, Meneau F, Kargl F, Ward D, Holliman P, Albergamo F (2007) Zeolite collapse and polymorphism. J Phys: Condens Matt 19(41):415102 1–17

    Google Scholar 

  • Greaves GN, Wilding MC, Fearn S, Langstaff D, Kargl F, Cox S, Van QV, Majérus O, Benmore CJ, Weber R, Martin CM, Hennet L (2008) Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts. Science 322:566–570

    Article  Google Scholar 

  • Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837

    Article  Google Scholar 

  • Grima JN, Jackson R, Alderson A, Evans KE (2000) Do Zeolites have negative poisson’s ratios. Adv Mater B 12(24):1912–1917

    Article  Google Scholar 

  • Hertz H (1986) Miscellaneous papers. Macmillan, London

    Google Scholar 

  • Hill R, Storåkers B, Zdunek AB (1989) A theoretical study of the brinell hardness test. Proc Royal Soc London A 423(1865):301–330

    Article  MATH  Google Scholar 

  • Jang JI, Lance MJ, Wen SQ, Tsui TY, Pharr GM (2005) Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behaviour. Acta Mater 53(6):1759–1770

    Article  Google Scholar 

  • Jensen BJ, Cherne FJ, Cooley JC, Zhernokletov MV, Kovalev AE (2010) Shock melting of cerium. Phys Rev B 81(21):214109 1–8

    Google Scholar 

  • Jiang MQ, Dai LH (2010) Short-range-order effects on intrinsic plasticity of metallic glasses. Philos Mag Lett 90(4):269–277

    Article  Google Scholar 

  • Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18:115–126

    Article  Google Scholar 

  • Juliano T, Gogotsi Y, Domnich V (2003) Effect of indentation unloading conditions on phase transformation induced events in silicon. J Mater Res 18(05):1192–1201

    Article  Google Scholar 

  • Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58(17):11085–11088

    Article  Google Scholar 

  • Kelly A, Tyson WR, Cottrell AH (1967) Ductile and brittle crystals. Phil Mag 15:567–586

    Article  Google Scholar 

  • Kese K, Li ZC (2006) Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter. Scripta Mater 55:699–702

    Article  Google Scholar 

  • Khan MK, Hainsworth SV, Fitzpatrick ME, Edwards L (2010) A combined experimental and finite element approach for determining mechanical properties of aluminium alloys by nanoindentation. Comput Mater Sci 49:4751–4760

    Article  Google Scholar 

  • Kolemen U (2006) Analysis of ISE in micro hardness measurements of bulk MgB2 superconductors using different models. J Alloy Compd 425:429–435

    Article  Google Scholar 

  • Kumar KS, Swygenhoven HV, Suresh S (2003) Mechanical behaviour of nanocrystalline metals and alloys. Acta Mater 51(19):5743–5774

    Article  Google Scholar 

  • Lakes RS, Wineman A (2006) On Poisson’s ratio in linearly viscoelastic solids. J Elast 85(1):45–63

    Article  MathSciNet  MATH  Google Scholar 

  • Ledbetter HM (1977) Ratio of the shear and Young’s moduli for polycrystalline metallic elements. Mater Sci Eng 27(2):133–135

    Article  Google Scholar 

  • Lee YH, Baek U, Kim YI, Nahm SH (2007) On the measurement of pile-up corrected hardness based on the early Hertzian loading analysis. Mater Lett 61(19–20):4039–4042

    Article  Google Scholar 

  • Leipner HS, Lorenz D, Zecker A, Lei H, Grau P (2001) Nanoindentation pop-in effect in semiconductors. Phys B 308–310:446–449

    Article  Google Scholar 

  • Li H, Ghosh A, Han YH, Bradt RC (1993) The Frictional Component of the Indentation Size Effect in Low Hardness Testing. Journal of Materials Research 8(5):1028–1032

    Google Scholar 

  • Li J, Vliet KJV, Zhu T, Yip S, Suresh S (2002) Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418:307–310

    Article  Google Scholar 

  • Lim YY, Chaudhri MM (1999) The effect of the indenter load on the nano hardness of ductile metals: an experimental study on polycrystalline work-hardened and annealed oxygen-free copper. Philos Mag A 79:2979–3000

    Article  Google Scholar 

  • Loerting T, Giovambattista N (2006) Amorphous ices: experiments and numerical simulations. J Phys Condens Matt 18: R919–R977

    Google Scholar 

  • Lu H, Zhang X, Krauss WG (1997) Uniaxial, shear, and Poisson relaxation and their conversion to bulk relaxation: studies on poly (methyl methacrylate). Polym Eng Sci 37:1053–1064

    Article  Google Scholar 

  • Maneiro MAG, Rodriguez J (2005) Pile up effect on nanoindentation tests with spherical-conical tips. Scripta Mater 52:593–598

    Article  Google Scholar 

  • Mason JK, Lund AC, Schuh CA (2006) Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys Rev B 73(054102):1–15

    Google Scholar 

  • Masumura RA, Hazzledine PM, Pande CS (1998) Yield stress of fine grained materials. Acta Mater 46(13):4527–4534

    Article  Google Scholar 

  • Navamathavan R, Park SJ, Hahn JH, Choi CK (2008) Nanoindentation ‘pop-in’ phenomenon in epitaxial ZnO thin films on sapphire substrates. Mater Charact 59:359–364

    Article  Google Scholar 

  • Navarro V, de la Fuente OR, Mascaraque A, Rojo JM (2008) Plastic properties of gold surfaces nanopatterned by ion beam sputtering. Phys Rev Lett B 78(224023):1–14

    Google Scholar 

  • Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  MATH  Google Scholar 

  • Nix WD, Greer JR, Feng G, Lilleodden ET (2007) Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films 515(6):3152–3157

    Article  Google Scholar 

  • Norbury AL, Samuel T (1928) The recovery and sinking-in or piling-up of material in the brinell test, and the effects of these factors on the correlation of the brinell with certain other hardness tests. J Iron Steel Ind 117:673–687

    Google Scholar 

  • Ogata S, Li J, Hirosaki N, Shibutani Y, Yip S (2004) Ideal shear strain of metals and ceramics. Phys Rev B 70:104104

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  • Peng Z, Gong J, Miao H (2004) On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data. J Eur Ceram Soc 24:2193–2201

    Article  Google Scholar 

  • Perottoni CA, Jornada JAHDa (2002) First-principles calculation of the structure and elastic properties of a 3D-polymerized fullerite. Phys Rev B 65(224208):1–6

    Google Scholar 

  • Phani KK, Sanyal D (2008) The relations between the shear modulus, the bulk modulus and Young’s modulus for porous isotropic ceramic materials. Mat Sci Eng, A 490(1–2):305–312

    Article  Google Scholar 

  • Poole PH, Grande T, Angell CA, McMillan PE (1997) Polymorphism in liquids and glasses. Science 275:322–323

    Article  Google Scholar 

  • Rabkin E, Deuschle JK, Baretzky B (2010) On the nature of displacement bursts during nanoindentation of ultrathin Ni films on sapphire. Acta Mater 58:1589–1598

    Article  Google Scholar 

  • Rar A, Sohn S, Oliver WC, Goldsby DL, Tullis TE, Pharr GM (2005) On the measurement of creep by nanoindentation with continuous stiffness techniques. In: Abstracts of symposium on fundamentals of nanoindentation and nanotribology III, Boston, Massachusetts, U.S.A November 29–December 3

    Google Scholar 

  • Rhee YW, Kim HW, Deng Y, Lawn BR (2001) Brittle fracture versus quasiplasticity in ceramics: a simple predictive index. J Am Ceramic Soc 84:561–565

    Article  Google Scholar 

  • Rodriguez R, Gutierrez I (2003) Correlation between nanoindentation and tensile properties: influence of the indentation size effect. Mater Sci Eng, A 361(1–2):377–384

    Google Scholar 

  • Rosenhain W, Ewen D (1913) The intercrystalline cohesion of metals. J Inst Metals 10:119–148

    Google Scholar 

  • Sahin O, Uzun O, Kolemen U, Ucar N (2007) Mechanical characterization for β-Sn single crystals using nanoindentation tests. Mater Charact 59(4):427–434

    Article  Google Scholar 

  • Samuels LE (1989) ASTM STP 889, American society for testing and materials, Philadelphia, 1986, p 5

    Google Scholar 

  • Sangwal K (2000) On the reverse indentation size effect and micro hardness measurement of solids. Mater Chem Phys 63:145–152

    Article  Google Scholar 

  • Santamaria-Perez D, Ross M, Errandonea D, Mukherjee GD, Mezouar M, Boehler R (2009) X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram. J Chem Phys 130(124509):1–8

    Google Scholar 

  • Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9(5):32–39

    Article  Google Scholar 

  • Schuh CA, Lund AC (2004) Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J Mater Res 19(07):2152–2158

    Article  Google Scholar 

  • Schuh CA, Mason JK, Lund AC (2005) Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat Mater 4(8):617–621

    Article  Google Scholar 

  • Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51(17):5159–5172

    Article  Google Scholar 

  • Sevillano JG, Buessler P, Vrieze J, Kaluza W, Bouaziz O, Iung T, Bonifaz E, Meizoso AM, Martinez Esnaola JM, Ocaña I (2000) ECSC Steel RTD Final report, CECA7210-PR-044

    Google Scholar 

  • Sneddon IN (1948) Boussinesq’s problem for a rigid cone. Math Proc Cambridge 44:492–507

    Article  MathSciNet  MATH  Google Scholar 

  • Swadener JG, George EP, Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50(4):681–694

    Article  MATH  Google Scholar 

  • Taljat B, Pharr GM (2000) Measurement of residual stresses by load and depth sensing spherical indentation. Mater Res Symp Proc 594:519–524

    Article  Google Scholar 

  • Tromas C, Gaillard Y (2004) Encyclopedia of materials science and technology. Elsevier Science, Amsterdam

    Google Scholar 

  • Valle CS, Lethbridge ZAD, Sinogeikin SV, Williams JJ, Walton R I, Evans KE, Bass JD (2008) Negative Poisson’s ratios in siliceous zeolite MFI-silicalite. J Chem Phys 128(18): 184503 1–5

    Google Scholar 

  • Venkataraman S, Kohlstedt DL, Gerberich WW (1992) Microscratch analysis of the work of adhesion for Pt thin films on NiO. Mater Res 7:1126–1132

    Article  Google Scholar 

  • Vlassak JJ, Nix WD (1994) Measuring the elastic properties of anisotropic materials by means of indentation experiments. J Mech Phys Solids 42(8):1223–1245

    Article  Google Scholar 

  • Vliet KJV, Li J, Zhu T, Yip S, Suresh S (2003) Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys Rev B 67(104105):1–15

    Google Scholar 

  • Williams JA (1994) Engineering tribology. Oxford University Press, Oxford

    Google Scholar 

  • Wo PC, Zuo L, Ngan AHW (2005) Time-dependent incipient plasticity inNi3Al as observed in nanoindentation. J Mater Res 20:489–495

    Article  Google Scholar 

  • Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ (2005) Fracture of brittle metallic glasses: brittleness or plasticity. Phys Rev Lett 94(12):125510 1–4

    Google Scholar 

  • Zha CS, Hemley RJ, Mao HK, Duffy TS, Meade C (1994) Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B 50:13105–13112

    Article  Google Scholar 

  • Zhang SB, Cohen ML, Louie SG (1985) Interface potential changes and Schottky barriers. Phys Rev B 32(3955):3955–3957

    Article  Google Scholar 

  • Zhang H, Srolovitz DJ, Douglas JF, Warren JA (2009) Grain boundaries exhibit the dynamics of glass-forming liquids. In: Proceedings of the national academy science, 106:7735–7740, USA

    Google Scholar 

  • Zhou XY, Jiang ZD, Wang HR, Yu RX (2003) Investigation on methods for dealing with pile-up errors in evaluating the mechanical properties of thin metal films at sub-micron scale on hard substrates by nanoindentation technique. Mater Sci Eng, A 488(1–2):318–322

    Google Scholar 

  • Zimmerman JA, Kelchner CL, Klein PA, Hamilton JC, Foiles SM (2001) Surface step effects on nanoindentation. Phys Rev Lett 87(16): 165507 1–4

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the EU FP7 Project “Micro and Nanocrystalline Functionally Graded Materials for Transport Applications” (MATRANS) under Grant Agreement no. 228869 and partially supported by NTUA funded project for basic research PEVE-NTUA-2010/65187900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos A. Charitidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koumoulos, E.P., Dragatogiannis, D.A., Charitidis, C.A. (2014). Nanomechanical Properties and Deformation Mechanism in Metals, Oxides and Alloys. In: Tiwari, A. (eds) Nanomechanical Analysis of High Performance Materials. Solid Mechanics and Its Applications, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6919-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6919-9_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6918-2

  • Online ISBN: 978-94-007-6919-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics