Skip to main content

Enzyme-Assisted Cellulose Nanofibers Production

  • Living reference work entry
  • First Online:
Handbook of Biorefinery Research and Technology

Abstract

Due to unique properties of cellulose nanofibers, this nanomaterial has been widely used in various applications such as nanocomposites, coatings, electronics, and medical. The features of nanocellulose specifically its dimensions and properties depend on the sources of lignocellulosic materials and the chosen method to extract and further fibrillating into nano size. However, it is still required to develop more sustainable and economical processing methods to ensure its continuous supply for commercial purposes in various industries. Generally, the pretreatment step plays an important role prior to further fibrillating the treated cellulose into nanoscale via mechanical method. It is because it will facilitate the subsequent process which always requires high energy, cost, and low efficiency to obtain the desired features of nanocellulose. Biological, chemical, physical, or combination pretreatment are common approaches which exhibit pros and cons that need to compromise in achieving high yield of nanocellulose with desired properties. Recently, it is encouraged to adopt circular economy principles by avoiding usage of toxic and hazardous chemicals, minimizing the number of processing steps, designing safer processes, and producing biodegradable residues. Thus, this book chapter focuses on the utilization of enzymes in treating the lignocellulosic materials to assist the mechanical method in producing cellulose nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr Reports. https://doi.org/10.1007/s40725-019-00088-1

  2. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86(9):1291–1299. https://doi.org/10.1017/CBO9781107415324.004

    Article  CAS  Google Scholar 

  3. Chirayil CJ, Joy J, Mathew L, Koetz J, Thomas S (2014) Nanofibril reinforced unsaturated polyester nanocomposites: morphology, mechanical and barrier properties, viscoelastic behavior and polymer chain confinement. Ind Crop Prod 56:246–254. https://doi.org/10.1016/j.indcrop.2014.03.005

    Article  CAS  Google Scholar 

  4. Qiu X, Hu S (2013) ‘Smart’ materials based on cellulose: a review of the preparations, properties, and applications. Materials (Basel) 6:738–781. https://doi.org/10.3390/ma6030738

    Article  PubMed  Google Scholar 

  5. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764. https://doi.org/10.1016/j.carbpol.2012.05.026

    Article  CAS  PubMed  Google Scholar 

  6. Janardhnan S, Sain MM (2006) Isolation of cellulose microfibrils – an enzymatic approach. Cellulose 1(2):176–188. https://doi.org/10.15376/biores.1.2.176-188

    Article  Google Scholar 

  7. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  8. Roy R, Rahman MS, Raynie DE (2020) Recent advances of greener pretreatment technologies of lignocellulose. Curr Res Green Sustain Chem 3:1–17. https://doi.org/10.1016/j.crgsc.2020.100035

    Article  Google Scholar 

  9. Che Hamzah NH, Markom M, Hassan O, Harun S (2015) Investigation of the effect of supercritical carbon dioxide pretreatment on sugar yield prior to enzymatic hydrolysis of empty fruit bunches. Ind Biotechnol 11(5):272–276. https://doi.org/10.1089/ind.2015.0012

    Article  CAS  Google Scholar 

  10. Xu H et al (2020) Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: a review. Bioresour Technol 310:123416. https://doi.org/10.1016/j.biortech.2020.123416

    Article  CAS  PubMed  Google Scholar 

  11. Tan YT, Ngoh GC, Chua ASM (2018) Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind Crop Prod 123:271–277. https://doi.org/10.1016/j.indcrop.2018.06.091

    Article  CAS  Google Scholar 

  12. Chen Z, Wan C (2017) Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresour Technol 250:532–537

    Article  PubMed  Google Scholar 

  13. Ong VZ, Wu TY, Lee CBTL, Cheong NWR, Shak KPY (2019) Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrason Sonochem 58:1–10. https://doi.org/10.1016/j.ultsonch.2019.05.015

    Article  CAS  Google Scholar 

  14. Muley PD, Tong JK, Novak X, Stevens J, Moldovan D, Jian S, Boldor D (2019) Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Convers Manag 196:1080–1088

    Article  CAS  Google Scholar 

  15. Lin W, Xing S, Jin Y, Lu X, Huang C, Yong Q (2020) Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour Technol 306:123163. https://doi.org/10.1016/j.biortech.2020.123163

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103. https://doi.org/10.1007/s10443-006-9032-9

    Article  CAS  Google Scholar 

  17. Yan M, Li S, Zhang M, Li C, Dong F, Li W (2013) Characterization of surface acetylated nanocrystalline cellulose by single-step method. Bioresources 8(4):6330–6341. https://doi.org/10.15376/biores.8.4.6330-6341

    Article  Google Scholar 

  18. Rosa MF et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92. https://doi.org/10.1016/j.carbpol.2010.01.059

    Article  CAS  Google Scholar 

  19. Supian MAF, Amin KNM, Jamari SS, Mohamad S (2020) Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method. J Environ Chem Eng 8(1):103024. https://doi.org/10.1016/j.jece.2019.103024

    Article  CAS  Google Scholar 

  20. Yin X, Wei L, Pan X, Liu C, Jiang J, Wang K (2021) The pretreatment of lignocelluloses with green solvent as biorefinery preprocess: a minor review. Front Plant Sci 12:670061. https://doi.org/10.3389/fpls.2021.670061

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gan PG, Sam T, Abdullah MF, Omar F (2020) An alkaline deep eutectic solvent based on potassium carbonate and glycerol as pretreatment for the isolation of cellulose nanocrystals from empty fruit bunch. Bioresources 15(1):1154–1170

    Article  CAS  Google Scholar 

  22. Ibrahim A, Abdullah MF, Sam ST (2018) Hydrolysis empty fruit bunch (EFB) using green solvent. IOP Conf Ser Mater Sci Eng 429(1):012059. https://doi.org/10.1088/1757-899X/429/1/012059

    Article  Google Scholar 

  23. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227. https://doi.org/10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  24. Iwamoto S, Nakagaito AN, Yano H (2007) Nano- fibrillation of pulp fibers for the processing of transparent nanocomposites. Phys A Appl 466:461–466. https://doi.org/10.1007/s00339-007-4175-6

    Article  CAS  Google Scholar 

  25. Li X, Shi Y, Kong W, Wei J, Song W, Wang S (2022) Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment – a review. Energy Rep 8:696–709. https://doi.org/10.1016/j.egyr.2021.12.015

    Article  Google Scholar 

  26. Couturier M et al (2015) Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus. Biotechnol Biofuels 8(1):1–16. https://doi.org/10.1186/s13068-015-0407-8

    Article  CAS  Google Scholar 

  27. Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353

    Article  CAS  PubMed  Google Scholar 

  28. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues – wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    Article  CAS  PubMed  Google Scholar 

  29. Feng YH et al (2018) Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Ind Crops Prod 111:285–291. https://doi.org/10.1016/j.indcrop.2017.10.041

    Article  CAS  Google Scholar 

  30. Ma Y et al (2019) Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. ACS Omega 4(5):8539–8547. https://doi.org/10.1021/acsomega.9b00519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen XQ, Pang GX, Shen WH, Tong X, Jia MY (2019) Preparation and characterization of the ribbon-like cellulose nanocrystals by the cellulase enzymolysis of cotton pulp fibers. Carbohydr Polym 207:713–719. https://doi.org/10.1016/j.carbpol.2018.12.042

    Article  CAS  PubMed  Google Scholar 

  32. Adnan S, Azhar AH, Jasmani L, Samsudin MF (2018) Properties of paper incorporated with nanocellulose extracted using microbial hydrolysis assisted shear process. IOP Conf Ser Mater Sci Eng 368(1):8. https://doi.org/10.1088/1757-899X/368/1/012022

    Article  Google Scholar 

  33. Chávez-Guerrero L et al (2019) Enzymatic hydrolysis of cellulose nanoplatelets as a source of sugars with the concomitant production of cellulose nanofibrils. Carbohydr Polym 210:85–91. https://doi.org/10.1016/j.carbpol.2019.01.055

    Article  CAS  PubMed  Google Scholar 

  34. Pirich CL, Picheth GF, Fontes AM, Delgado-Aguilar M, Ramos LP (2020) Disruptive enzyme-based strategies to isolate nanocelluloses: a review. Cellulose 27(10):5457–5475. https://doi.org/10.1007/s10570-020-03185-8

    Article  CAS  Google Scholar 

  35. Segato F, Damásio ARL, de Lucas RC, Squina FM, Prade RA (2014) Genomics review of holocellulose deconstruction by aspergilli. Microbiol Mol Biol Rev 78(4):588–613. https://doi.org/10.1128/mmbr.00019-14

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zielińska D, Szentner K, Waśkiewicz A, Borysiak S (2021) Production of nanocellulose by enzymatic treatment for application in polymer composites. Materials (Basel) 14(9):1–26. https://doi.org/10.3390/ma14092124

    Article  CAS  Google Scholar 

  37. Hu J, Tian D, Renneckar S, Saddler JN (2018) Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Sci Rep 8(1):4–11. https://doi.org/10.1038/s41598-018-21016-6

    Article  CAS  Google Scholar 

  38. Arantes V, Saddler JN, Hu J (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4(1):36. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3198685&tool=pmcentrez&rendertype=abstract. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3042927&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  39. Siqueira GA, Dias IKR, Arantes V (2019) Exploring the action of endoglucanases on bleached eucalyptus Kraft pulp as potential catalyst for isolation of cellulose nanocrystals. Int J Biol Macromol 133:1249–1259. https://doi.org/10.1016/j.ijbiomac.2019.04.162

    Article  CAS  PubMed  Google Scholar 

  40. Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. Lwt 59(2P2):1311–1318. https://doi.org/10.1016/j.lwt.2014.04.011

    Article  CAS  Google Scholar 

  41. Tibolla H, Pelissari FM, Rodrigues MI, Menegalli FC (2017) Cellulose nanofibers produced from banana peel by enzymatic treatment: study of process conditions. Ind Crop Prod 95:664–674. https://doi.org/10.1016/j.indcrop.2016.11.035

    Article  CAS  Google Scholar 

  42. Tibolla H et al (2019) Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: in vitro cytotoxicity assessment. Carbohydr Polym 207:169–179. https://doi.org/10.1016/j.carbpol.2018.11.079

    Article  CAS  PubMed  Google Scholar 

  43. Hassan ML, Bras J, Hassan EA, Silard C, Mauret E (2014) Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind Crop Prod 55:102–108. https://doi.org/10.1016/j.indcrop.2014.01.055

    Article  CAS  Google Scholar 

  44. Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814. https://doi.org/10.1039/b915746h

    Article  CAS  Google Scholar 

  45. Bauli CR, Rocha DB, de Oliveira SA, Rosa DS (2019) Cellulose nanostructures from wood waste with low input consumption. J Clean Prod 211:408–416. https://doi.org/10.1016/j.jclepro.2018.11.099

    Article  CAS  Google Scholar 

  46. Bondancia TJ et al (2018) Enzymatic production of cellulose nanofibers and sugars in a stirred-tank reactor: determination of impeller speed, power consumption, and rheological behavior. Cellulose 25(8):4499–4511. https://doi.org/10.1007/s10570-018-1876-2

    Article  CAS  Google Scholar 

  47. Tong X, Shen W, Chen X, Jia M, Roux JC (2020) Preparation and mechanism analysis of morphology-controlled cellulose nanocrystals via compound enzymatic hydrolysis of eucalyptus pulp. J Appl Polym Sci 137(9):1–11. https://doi.org/10.1002/app.48407

    Article  CAS  Google Scholar 

  48. Michelin M, Gomes DG (2023) Nanocellulose production: exploring the enzymatic. 1–36

    Google Scholar 

  49. Villares A, Moreau C, Bennati-Granier C, Garajova S, Foucat L, Falourd X, Saake B, Berrin JG, Cathala B (2017) Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci Rep 7:1–9. https://doi.org/10.1038/srep40262

  50. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):1–14. https://doi.org/10.1186/1754-6834-6-41

    Article  CAS  Google Scholar 

  51. Valls C et al (2019) Assessing the enzymatic effects of cellulases and LPMO in improving mechanical fibrillation of cotton linters. Biotechnol Biofuels 12:1–14. https://doi.org/10.1186/s13068-019-1502-z

    Article  CAS  Google Scholar 

  52. Michelin M, Gomes DG, Romaní A, de Polizeli MLTM, Teixeira JA (2020) Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules 25(15):3411. https://doi.org/10.3390/molecules25153411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Seo DJ, Fujita H, Sakoda A (2011) Effects of a non-ionic surfactant, Tween 20, on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption 17(5):813–822. https://doi.org/10.1007/s10450-011-9340-8

    Article  CAS  Google Scholar 

  54. Saini JK, Patel AK, Adsul M, Singhania RR (2016) Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy 98:29–42. https://doi.org/10.1016/j.renene.2016.03.089

    Article  CAS  Google Scholar 

  55. Wang W, Zhu Y, Du J, Yang Y, Jin Y (2015) Influence of lignin addition on the enzymatic digestibility of pretreated lignocellulosic biomasses. Bioresour Technol 181:7–12. https://doi.org/10.1016/j.biortech.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  56. Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103(1):201–208. https://doi.org/10.1016/j.biortech.2011.09.091

    Article  CAS  PubMed  Google Scholar 

  57. Tu M, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23(2):398–406. https://doi.org/10.1021/bp060354f

    Article  CAS  PubMed  Google Scholar 

  58. Gomes D, Rodrigues AC, Domingues L, Gama M (2015) Cellulase recycling in biorefineries – is it possible? Appl Microbiol Biotechnol 99(10):4131–4143. https://doi.org/10.1007/s00253-015-6535-z

    Article  CAS  PubMed  Google Scholar 

  59. Gomes D, Gama M, Domingues L (2018) Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings. Biotechnol Biofuels 11(1):1–12. https://doi.org/10.1186/s13068-018-1103-2

    Article  CAS  Google Scholar 

  60. McLean BW et al (2002) Carbohydrate-binding modules recognize fine substructures of cellulose. J Biol Chem 277(52):50245–50254. https://doi.org/10.1074/jbc.M204433200

    Article  CAS  PubMed  Google Scholar 

  61. Rodrigues AC, Leitão AF, Moreira S, Felby C, Gama M (2012) Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution. Bioresour Technol 110:526–533. https://doi.org/10.1016/j.biortech.2012.01.140

    Article  CAS  PubMed  Google Scholar 

  62. Yarbrough JM et al (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11(3):3101–3109. https://doi.org/10.1021/acsnano.7b00086

    Article  CAS  PubMed  Google Scholar 

  63. Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzym Microb Technol 52(1):20–25. https://doi.org/10.1016/j.enzmictec.2012.09.002

    Article  CAS  Google Scholar 

  64. Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13(5):1339–1344. https://doi.org/10.1039/c1gc15103g

    Article  CAS  Google Scholar 

  65. Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234. https://doi.org/10.1016/j.carbpol.2013.04.086

    Article  CAS  PubMed  Google Scholar 

  66. Hoo DY et al (2022) Ultrasonic cavitation: an effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrason Sonochem 90:106176. https://doi.org/10.1016/j.ultsonch.2022.106176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Campos A et al (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20(3):1491–1500. https://doi.org/10.1007/s10570-013-9909-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dzun Noraini Jimat .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jimat, D.N., Jafri, N.H.S., Wan Nawawi, W.M.F., Ahmad Nor, Y. (2024). Enzyme-Assisted Cellulose Nanofibers Production. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_82-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6724-9_82-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6724-9

  • Online ISBN: 978-94-007-6724-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics