Skip to main content

Delignification Strategies of Lignocellulosic Biomass: A Crucial Step for Effective Saccharification

  • Living reference work entry
  • First Online:
Handbook of Biorefinery Research and Technology

Abstract

The interaction of lignin with hemicellulose hinders cellulose accessibility for the enzyme and limits its performance of bioconversion into chemicals and fuels. Delignification strategy adopted is one of the decisive steps to control, ensuring the viability of the overall bioprocess in biorefinery. The recalcitrant nature of lignin is responsible for the inhibition of enzymatic saccharification. The main phenomena implied in enzyme inhibition are developed. As there is a need for relevant delignification strategies, the present chapter summarizes the major physical, chemical, physicochemical, and biological pretreatment approaches, used in a single or integrated steps to remove lignin and get access to a delignified biomass of quality. The conditions required to ensure high delignification yield as well as the advantages and drawbacks of each pretreatment technique were developed. As the production of lignin inhibitors associated to pretreatment is one of the main barriers affecting the viability of biorefinery, there is a crucial need for application of suitable detoxification strategies to selectively reduce the inhibitory effects of lignin and/or lignin-derived phenolics without a significant loss of fermentable sugars. The various strategies are explored. Finally, as lignin is the only aromatic polymer found in nature which has potential applications in production of biomaterials and chemicals, the development of a sustainable lignocellulosic biorefinery combining the synergetic valorization of polysaccharides and lignin is targeted. Recent developments on this aspect are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFEX:

Ammonia fiber expansion method

BSA:

Bovine serum albumin

CBH:

Cellobiohydrolase

DES:

Deep eutectic solvent

EG:

Endoglucanase

IL:

Ionic liquid

LCC:

Lignin carbohydrate complex

LCB:

Lignocellulosic biomass

LPMO:

Lytic polysaccharide monooxygenase

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

SE:

Steam explosion

β–G:

β–glucosidase

References

  1. Choi J-H, Jang S-K, Kim J-H et al (2019) Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renew Energy 130:952–960. https://doi.org/10.1016/j.renene.2018.05.052

    Article  CAS  Google Scholar 

  2. Saini JK, Himanshu H et al (2022) Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: a review. Bioresour Technol 360:127517. https://doi.org/10.1016/j.biortech.2022.127517

    Article  CAS  Google Scholar 

  3. Bhatia SK, Jagtap SS, Bedekar AA et al (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724. https://doi.org/10.1016/j.biortech.2019.122724

    Article  CAS  PubMed  Google Scholar 

  4. Vanholme R, De Meester B, Ralph J, Boerjan W (2019) Lignin biosynthesis and its integration into metabolism. Curr Opin Biotechnol 56:230–239. https://doi.org/10.1016/j.copbio.2019.02.018

    Article  CAS  PubMed  Google Scholar 

  5. Baruah J, Nath BK, Sharma R et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6

    Google Scholar 

  6. Guerriero G, Hausman J-F, Strauss J et al (2016) Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci 16:1–16. https://doi.org/10.1002/elsc.201400196

    Article  CAS  Google Scholar 

  7. Chen X, Liu S, Zhai R et al (2022) Lime pretreatment of pelleted corn Stover boosts ethanol titers and yields without water washing or detoxifying pretreated biomass. Renew Energy 192:396–404. https://doi.org/10.1016/j.renene.2022.04.095

    Article  CAS  Google Scholar 

  8. dos Santos AC, Ximenes E, Kim Y, Ladisch MR (2019) Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol 37:518–531. https://doi.org/10.1016/j.tibtech.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  9. Yang H, Yoo CG, Meng X et al (2020) Structural changes of lignins in natural Populus variants during different pretreatments. Bioresour Technol 295:122240. https://doi.org/10.1016/j.biortech.2019.122240

    Article  CAS  PubMed  Google Scholar 

  10. Zhai R, Hu J, Jin M (2022) Towards efficient enzymatic saccharification of pretreated lignocellulose: enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies. Biotechnol Adv 61:108044. https://doi.org/10.1016/j.biotechadv.2022.108044

    Article  CAS  PubMed  Google Scholar 

  11. Banu Jamaldheen S, Kurade MB, Basak B et al (2022) A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol 346:126591. https://doi.org/10.1016/j.biortech.2021.126591

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Zheng Y (2017) Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects. Biotechnol Adv 35:466–489. https://doi.org/10.1016/j.biotechadv.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  13. Ko JK, Ximenes E, Kim Y, Ladisch MR (2015) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 112:447–456. https://doi.org/10.1002/bit.25359

    Article  CAS  PubMed  Google Scholar 

  14. Wu R, Liu W, Li Z, Hou Q (2023) Revealing adsorption of mixed enzymes onto lignin resulted from integration of hydrothermal and chemi-mechanical pretreatment. Ind Crop Prod 194:116353. https://doi.org/10.1016/j.indcrop.2023.116353

    Article  CAS  Google Scholar 

  15. Basak B, Jeon B-H, Kim TH et al (2020) Dark fermentative hydrogen production from pretreated lignocellulosic biomass: effects of inhibitory byproducts and recent trends in mitigation strategies. Renew Sust Energ Rev 133:110338. https://doi.org/10.1016/j.rser.2020.110338

    Article  CAS  Google Scholar 

  16. Lin R, Cheng J, Ding L et al (2015) Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresour Technol 196:250–255. https://doi.org/10.1016/j.biortech.2015.07.097

    Article  CAS  PubMed  Google Scholar 

  17. Liu T, Yang L, Liu B, Tan L (2019) Hydroxycinnamic acids release during bioconversion of corn Stover and their effects on lignocellulolytic enzymes. Bioresour Technol 294:122116. https://doi.org/10.1016/j.biortech.2019.122116

    Article  CAS  PubMed  Google Scholar 

  18. Mhlongo SI, den Haan R, Viljoen-Bloom M, van Zyl WH (2015) Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance. Enzym Microb Technol 81:16–22. https://doi.org/10.1016/j.enzmictec.2015.07.005

    Article  CAS  Google Scholar 

  19. Jiang X, Zhai R, Leng Y et al (2022) Understanding the toxicity of lignin-derived phenolics towards enzymatic saccharification of lignocellulose for rationally developing effective in-situ mitigation strategies to maximize sugar production from lignocellulosic biorefinery. Bioresour Technol 349:126813. https://doi.org/10.1016/j.biortech.2022.126813

    Article  CAS  PubMed  Google Scholar 

  20. da Silva VM, Sato JAP, Araujo JN et al (2017) Systematic studies of the interactions between a model polyphenol compound and microbial β-glucosidases. PLoS One 12:e0181629. https://doi.org/10.1371/journal.pone.0181629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhai R, Hu J, Saddler JN (2018) Understanding the slowdown of whole slurry hydrolysis of steam pretreated lignocellulosic woody biomass catalyzed by an up-to-date enzyme cocktail. Sustain Energy Fuels 2:1048–1056. https://doi.org/10.1039/C7SE00569E

    Article  CAS  Google Scholar 

  22. Malik K, Sharma P, Yang Y et al (2022) Lignocellulosic biomass for bioethanol: insight into the advanced pretreatment and fermentation approaches. Ind Crop Prod 188:115569. https://doi.org/10.1016/j.indcrop.2022.115569

    Article  CAS  Google Scholar 

  23. Kim Y, Kreke T, Ko JK, Ladisch MR (2015) Hydrolysis-determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnol Bioeng 112:677–687. https://doi.org/10.1002/bit.25465

    Article  CAS  PubMed  Google Scholar 

  24. Gallego-García M, Moreno AD, Manzanares P et al (2023) Recent advances on physical technologies for the pretreatment of food waste and lignocellulosic residues. Bioresour Technol 369:128397. https://doi.org/10.1016/j.biortech.2022.128397

    Article  CAS  PubMed  Google Scholar 

  25. Fu Y, Gu B-J, Wang J et al (2018) Novel micronized woody biomass process for production of cost-effective clean fermentable sugars. Bioresour Technol 260:311–320. https://doi.org/10.1016/j.biortech.2018.03.096

    Article  CAS  PubMed  Google Scholar 

  26. Gonzales RR, Sivagurunathan P, Kim SH (2016) Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation. Int J Hydrog Energy 41:21678–21684. https://doi.org/10.1016/j.ijhydene.2016.06.198

    Article  CAS  Google Scholar 

  27. Lancefield CS, Panovic I, Deuss PJ et al (2017) Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem 19:202–214. https://doi.org/10.1039/C6GC02739C

    Article  CAS  Google Scholar 

  28. Kumar S, Paritosh K, Pareek N et al (2018) De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: an overview. Renew Sust Energ Rev 90:160–170. https://doi.org/10.1016/j.rser.2018.03.049

    Article  CAS  Google Scholar 

  29. Barmana DN, Haquea MA, Kang TH et al (2014) Effect of mild alkali pretreatment on structural changes of reed (Phragmites communis Trinius) straw. Environ Technol 35:232–241. https://doi.org/10.1080/09593330.2013.824009

    Article  CAS  PubMed  Google Scholar 

  30. Poddar BJ, Nakhate SP, Gupta RK et al (2022) A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. Int J Environ Sci Technol 19:3429–3456. https://doi.org/10.1007/s13762-021-03248-8

    Article  CAS  Google Scholar 

  31. Dutta T, Isern NG, Sun J et al (2017) Survey of lignin-structure changes and depolymerization during ionic liquid pretreatment. ACS Sustain Chem Eng 5:10116–10127. https://doi.org/10.1021/acssuschemeng.7b02123

    Article  CAS  Google Scholar 

  32. Provost V, Dumarcay S, Ziegler-Devin I et al (2022) Deep eutectic solvent pretreatment of biomass: influence of hydrogen bond donor and temperature on lignin extraction with high β-O-4 content. Bioresour Technol 349:126837. https://doi.org/10.1016/j.biortech.2022.126837

    Article  CAS  PubMed  Google Scholar 

  33. Gundupalli MP, Anne Sahithi ST, Jayex EP et al (2022) Combined effect of hot water and deep eutectic solvent (DES) pretreatment on a lignocellulosic biomass mixture for improved saccharification efficiency. Bioresource Technol Rep 17:100986. https://doi.org/10.1016/j.biteb.2022.100986

    Article  CAS  Google Scholar 

  34. Sharma V, Tsai M-L, Chen C-W et al (2022) Deep eutectic solvents as promising pretreatment agents for sustainable lignocellulosic biorefineries: a review. Bioresour Technol 360:127631. https://doi.org/10.1016/j.biortech.2022.127631

    Article  CAS  PubMed  Google Scholar 

  35. Ladeira-Ázar RIS, Morgan T, Maitan-Alfenas GP, Guimarães VM (2019) Inhibitors compounds on sugarcane bagasse Saccharification: effects of pretreatment methods and alternatives to decrease inhibition. Appl Biochem Biotechnol 188:29–42. https://doi.org/10.1007/s12010-018-2900-6

    Article  CAS  PubMed  Google Scholar 

  36. da Costa Nogueira C, de Araújo Padilha CE, de Medeiros Dantas JM et al (2021) In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass. Renew Energy 180:914–936. https://doi.org/10.1016/j.renene.2021.09.012

    Article  CAS  Google Scholar 

  37. Li J, Shi S, Tu M et al (2018) Detoxification of Organosolv-pretreated pine prehydrolysates with anion resin and cysteine for butanol fermentation. Appl Biochem Biotechnol 186:662–680. https://doi.org/10.1007/s12010-018-2769-4

    Article  CAS  PubMed  Google Scholar 

  38. Pinto ASS, Brondi MG, de Freitas JV et al (2021) Mitigating the negative impact of soluble and insoluble lignin in biorefineries. Renew Energy 173:1017–1026. https://doi.org/10.1016/j.renene.2021.03.137

    Article  CAS  Google Scholar 

  39. Liu H, Zhu JY, Fu SY (2010) Effects of lignin−metal complexation on enzymatic hydrolysis of cellulose. J Agric Food Chem 58:7233–7238. https://doi.org/10.1021/jf1001588

    Article  CAS  PubMed  Google Scholar 

  40. Akimkulova A, Zhou Y, Zhao X, Liu D (2016) Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin. Bioresour Technol 208:110–116. https://doi.org/10.1016/j.biortech.2016.02.059

    Article  CAS  PubMed  Google Scholar 

  41. Cannella D, Sveding PV, Jørgensen H (2014) PEI detoxification of pretreated spruce for high solids ethanol fermentation. Appl Energy 132:394–403. https://doi.org/10.1016/j.apenergy.2014.07.038

    Article  CAS  Google Scholar 

  42. Deng F, Aita GM (2018) Detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by soluble polyelectrolyte flocculants. Ind Crop Prod 112:681–690. https://doi.org/10.1016/j.indcrop.2017.12.061

    Article  CAS  Google Scholar 

  43. Ruiz HA, Galbe M, Garrote G et al (2021) Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion and liquid hot water) for biomass fractionation under biorefinery concept. Bioresour Technol 342:125961. https://doi.org/10.1016/j.biortech.2021.125961

    Article  CAS  PubMed  Google Scholar 

  44. Dharmaraja J, Shobana S, Arvindnarayan S et al (2023) Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresour Technol 369:128328. https://doi.org/10.1016/j.biortech.2022.128328

    Article  CAS  PubMed  Google Scholar 

  45. Cavka A, Jönsson LJ (2013) Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresour Technol 136:368–376. https://doi.org/10.1016/j.biortech.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  46. Cavka A, Martín C, Alriksson B et al (2015) Techno-economic evaluation of conditioning with sodium sulfite for bioethanol production from softwood. Bioresour Technol 196:129–135. https://doi.org/10.1016/j.biortech.2015.07.051

    Article  CAS  PubMed  Google Scholar 

  47. Shen X-J, Wen J-L, Mei Q-Q et al (2019) Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem 21:275–283. https://doi.org/10.1039/C8GC03064B

    Article  CAS  Google Scholar 

  48. Meng X, Bhagia S, Wang Y et al (2020) Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Ind Crop Prod 146:112144. https://doi.org/10.1016/j.indcrop.2020.112144

    Article  CAS  Google Scholar 

  49. Biorefinery products: global markets. (2022). https://www.bccresearch.com/market-research/energy-and-resources/biorefinery-products-markets-report.html. Accessed 25 Aug 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud Villain-Gambier .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Villain-Gambier, M., Pasquet, PL., Trebouet, D. (2024). Delignification Strategies of Lignocellulosic Biomass: A Crucial Step for Effective Saccharification. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_73-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6724-9_73-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6724-9

  • Online ISBN: 978-94-007-6724-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics