Skip to main content

Cholera Toxin

Biological Toxins and Bioterrorism
  • 1779 Accesses

Abstract

Cholera is a potentially epidemic severe watery diarrhea which might lead to death, if untreated. The causative agent, Vibrio cholerae, secretes a potent enterotoxin called cholera toxin (CT) which is largely responsible for the disease. CT consists of one enzymatically active A-subunit and five immunogenic B-subunits. The B-subunits form a symmetrical pentamer into which A chain sits on the top creating wedge-shaped structure. Both A- and B-subunits are encoded by the CTX genetic element which corresponds to the genome of an integrated filamentous bacteriophage, CTXφ. The regulation of cholera toxin expression is controlled by a cascade of regulatory proteins typically referred to as the ToxR regulon. The secretion of cholera toxin from the outer membrane is mediated by type II secretion system, popularly known as T2SS pathway. CT has been shown to be associated with outer membrane vesicles which are internalized through CT receptor; whether a fraction of CT can be secreted through these vesicles remains to be determined. For its action in the human intestine, B-subunits of CT secreted extracellularly by V. cholerae bind to GM1 ganglioside receptors in the intestinal epithelial cells, and then the A-subunit induces adenylate cyclase activity resulting in cyclic adenosine monophosphate activation and fluid secretion. Various natural ligands have been reported to act as inhibitors of cholera toxin such as those originating from black tea, apple, garlic, and ginger. The knowledge described in the present brief review might be useful for further steps in the studies on CT and its remediation.

When the same acronym is used for a protein product and its respective gene product, the gene name is italicized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arita M, Takeda T, Honda T, Miwatani T. Purification and characterization of Vibrio cholerae non-O1 heat-stable enterotoxin. Infect Immun. 1986;52:45–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee R, Das S, Mukhopadhyay K, Nag S, Chakrabortty A, Chaudhuri K. Involvement of in vivo induced cheY-4 gene of Vibrio cholerae in motility, early adherence to intestinal epithelial cells and regulation of virulence factors. FEBS Lett. 2002;532:221–6.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabortty A, Das S, Majumdar S, Mukhopadhyay K, Roychoudhury S, Chaudhuri K. Use of RNA arbitrarily primed-PCR fingerprinting to identify Vibrio cholerae genes differentially expressed in the host following infection. Infect Immun. 2000;68:3878–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee D, Chaudhuri K. Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. FEBS Lett. 2011;585:1357–62.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee SN, Das J. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J Gen Microbiol. 1967;49:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee SN, Adhikari PC, Maiti M, Chaudhuri CR, Sur P. Growth of Vibrio cholerae cells: biochemical & electron microscopic study. Indian J Exp Biol. 1974;12:35–45.

    CAS  PubMed  Google Scholar 

  • Chatterjee R, Chaudhuri K, Chaudhuri P. On detection and assessment of statistical significance of Genomic Islands. BMC Genomics. 2008;9:150.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaudhuri K, Chatterjee SN. Cholera toxins. Berlin: Springer; 2009.

    Book  Google Scholar 

  • Chaudhuri AG, Bhattacharya J, Nair GB, Takeda T, Chakrabarti MK. Rise of cytosolic Ca2+ and activation of membrane-bound guanylyl cyclase activity in rat enterocytes by heat-stable enterotoxin of Vibrio cholerae non-01. FEMS Microbiol Lett. 1998;160:125–9.

    Article  CAS  PubMed  Google Scholar 

  • Chiang SL, Mekalanos JJ. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol. 1998;27:797–805.

    Article  CAS  PubMed  Google Scholar 

  • Childers BM, Klose KE. Regulation of virulence in Vibrio cholerae: the ToxR regulon. Future Microbiol. 2007;2:335–44.

    Article  CAS  PubMed  Google Scholar 

  • Das S, Chakrabortty A, Banerjee R, Roychoudhury S, Chaudhuri K. Comparison of global transcription responses allows identification of Vibrio cholerae genes differentially expressed following infection. FEMS Microbiol Lett. 2000;190:87–91.

    Article  CAS  PubMed  Google Scholar 

  • Das S, Sen A, Uma G, Varghese V, Chaudhuri S, Bhattacharya SK, et al. Genomic diversity of group A rotavirus strains infecting humans in eastern India. J Clin Microbiol. 2002;40:146–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis BM, Waldor MK. Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol. 2003;6:35–42.

    Article  CAS  PubMed  Google Scholar 

  • De SN. Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature. 1959;183:1533–4.

    Article  CAS  PubMed  Google Scholar 

  • De SN, Chatterje DN. An experimental study of the mechanism of action of Vibrio cholerae on the intestinal mucous membrane. J Pathol Bacteriol. 1953;66:559–62.

    Article  CAS  PubMed  Google Scholar 

  • Dutta NK, Panse MV, Kulkarni DR. Role of cholera a toxin in experimental cholera. J Bacteriol. 1959;78:594–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fasano A, Baudry B, Pumplin DW, Wasserman SS, Tall BD, Ketley JM, et al. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci U S A. 1991;88:5242–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finkelstein RA, LoSpalluto JJ. Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J Exp Med. 1969;130:185–202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finkelstein RA, LoSpalluto JJ. Production of highly purified choleragen and choleragenoid. J Infect Dis. 1970;121 Suppl 121:63+.

    Article  PubMed  Google Scholar 

  • Finkelstein RA, Boesman M, Neoh SH, LaRue MK, Delaney R. Dissociation and recombination of the subunits of the cholera enterotoxin (choleragen). J Immunol. 1974;113:145–50.

    CAS  PubMed  Google Scholar 

  • Fullner KJ, Mekalanos JJ. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J. 2000;19:5315–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirst TR, Sanchez J, Kaper JB, Hardy SJ, Holmgren J. Mechanism of toxin secretion by Vibrio cholerae investigated in strains harboring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc Natl Acad Sci U S A. 1984;81:7752–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoque KM, Saha S, Gupta DD, Chakrabarti MK. Role of nitric oxide in NAG-ST induced store-operated calcium entry in rat intestinal epithelial cells. Toxicology. 2004;201:95–103.

    Article  CAS  PubMed  Google Scholar 

  • Horstman AL, Bauman SJ, Kuehn MJ. Lipopolysaccharide 3-deoxy-d-manno-octulosonic acid (Kdo) core determines bacterial association of secreted toxins. J Biol Chem. 2004;279:8070–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson TL, Abendroth J, Hol WG, Sandkvist M. Type II secretion: from structure to function. FEMS Microbiol Lett. 2006;255:175–86.

    Article  CAS  PubMed  Google Scholar 

  • Krukonis ES, DiRita VJ. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr Opin Microbiol. 2003;6:186–90.

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Hava DL, Waldor MK, Camilli A. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell. 1999;99:625–34.

    Article  CAS  PubMed  Google Scholar 

  • Mekalanos JJ. Duplication and amplification of toxin genes in Vibrio cholerae. Cell. 1983;35:253–63.

    Article  CAS  PubMed  Google Scholar 

  • Mekalanos JJ, Swartz DJ, Pearson GD, Harford N, Groyne F, de Wilde M. Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature. 1983;306:551–7.

    Article  CAS  PubMed  Google Scholar 

  • Merritt EA, Sarfaty S, Jobling MG, Chang T, Holmes RK, Hirst TR, et al. Structural studies of receptor binding by cholera toxin mutants. Protein Sci. 1997;6:1516–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nag S, Das S, Chaudhuri K. In vivo induced clpB1 gene of Vibrio cholerae is involved in different stress responses and affects in vivo cholera toxin production. Biochem Biophys Res Commun. 2005;331:1365–73.

    Article  CAS  PubMed  Google Scholar 

  • Nishibuchi M, Fasano A, Russell RG, Kaper JB. Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin. Infect Immun. 1992;60:3539–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien AD, Chen ME, Holmes RK, Kaper J, Levine MM. Environmental and human isolates of Vibrio cholerae and Vibrio parahaemolyticus produce a Shigella dysenteriae 1 (Shiga)-like cytotoxin. Lancet. 1984;1:77–8.

    Article  PubMed  Google Scholar 

  • Pearson GD, Woods A, Chiang SL, Mekalanos JJ. CTX genetic element encodes a site-specific recombination system and an intestinal colonization factor. Proc Natl Acad Sci U S A. 1993;90:3750–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Politi M, Alvaro-Blanco J, Groves P, Prieto A, Leal JA, Cañada FJ, et al. Screening of garlic water extract for binding activity with cholera toxin B pentamer by NMR spectroscopy – an old remedy giving a new surprise. Eur J Org Chem. 2006;9:2067–73.

    Article  Google Scholar 

  • Saha P, Das B, Chaudhuri K. Role of 6-Gingerol in the reduction of cholera toxin activity in vitro and in vivo. Antimicrob Agents Chemother. 2013;57:4373–80.

    Google Scholar 

  • Saito T, Miyake M, Toba M, Okamatsu H, Shimizu S, Noda M. Inhibition by apple polyphenols of ADP-ribosyltransferase activity of cholera toxin and toxin-induced fluid accumulation in mice. Microbiol Immunol. 2002;46:249–55.

    Article  CAS  PubMed  Google Scholar 

  • Sanyal SC, Alam K, Neogi PK, Huq MI, Al-Mahmud KA. A new cholera toxin. Lancet. 1983;1:1337.

    Article  CAS  PubMed  Google Scholar 

  • Sathyamoorthy V, Hall RH, McCardell BA, Kothary MH, Ahn SJ, Ratnayake S. Purification and characterization of a cytotonic protein expressed In vitro by the live cholera vaccine candidate CVD 103-HgR. Infect Immun. 2000;68:6062–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda T, Peina Y, Ogawa A, Dohi S, Abe H, Nair GB, et al. Detection of heat-stable enterotoxin in a cholera toxin gene-positive strain of Vibrio cholerae O1. FEMS Microbiol Lett. 1991;64:23–7.

    Article  CAS  PubMed  Google Scholar 

  • Toda M, Okubo S, Ikigai H, Suzuki T, Suzuki Y, Shimamura T. The protective activity of tea against infection by Vibrio cholerae O1. J Appl Bacteriol. 1991;70:109–12.

    Article  CAS  PubMed  Google Scholar 

  • Trucksis M, Galen JE, Michalski J, Fasano A, Kaper JB. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc Natl Acad Sci U S A. 1993;90:5267–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science (New York, NY). 1996;272:1910–4.

    Google Scholar 

  • Waldor MK, Rubin EJ, Pearson GD, Kimsey H, Mekalanos JJ. Regulation, replication, and integration functions of the Vibrio cholerae CTXphi are encoded by region RS2. Mol Microbiol. 1997;24:917–26.

    Article  CAS  PubMed  Google Scholar 

  • Walia K, Ghosh S, Singh H, Nair GB, Ghosh A, Sahni G, et al. Purification and characterization of novel toxin produced by Vibrio cholerae O1. Infect Immun. 1999;67:5215–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoh M, Honda T, Miwatani T. Purification and partial characterization of a non-O1 Vibrio cholerae hemolysin that cross-reacts with thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun. 1986;52:319–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang RG, Scott DL, Westbrook ML, Nance S, Spangler BD, Shipley GG, et al. The three-dimensional crystal structure of cholera toxin. J Mol Biol. 1995;251:563–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keya Chaudhuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Chaudhuri, K. (2014). Cholera Toxin. In: Gopalakrishnakone, P. (eds) Biological Toxins and Bioterrorism. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6645-7_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6645-7_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6645-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Structure, Genetics, and Mode of Disease of Cholera Toxin
    Published:
    04 March 2015

    DOI: https://doi.org/10.1007/978-94-007-6645-7_7-2

  2. Original

    Cholera Toxin
    Published:
    18 June 2014

    DOI: https://doi.org/10.1007/978-94-007-6645-7_7-1