Skip to main content

Marine Impacts and Their Consequences

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Marine Geosciences
  • 317 Accesses

Introduction

Asteroid and comet impacts (meteorite impacts) are important factors in shaping the surface of the terrestrial planets. The impacts release vast amounts of energy resulting in sudden increase in temperature and pressure, structural deformations, and redistribution of target and bolide (asteroid and comet) material. It is presently well accepted that impacts, especially into marine environments, have had a major influence on the development of the Earth. The Earth is covered by 71 % seawater (7 % shelf seas and 64 % deep oceans), and, consequently, impacts into marine targets should be the most common.

Asteroids and comets (both generally called bolides, projectiles, or impactors) impact regularly on the Earth and other planetary bodies in our solar system, forming impact craters, expelling ejecta material, and triggering earthquakes and tsunamis. The impact craters registered on the Earth range from a few meters to hundreds of kilometers in diameter (http://www.passc.net/EarthImpactDatabase/...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Artemieva, N., and Shuvalov, V., 2002. Shock metamorphism on the ocean floor (numerical simulations). Deep-Sea Research II, 49, 959–968.

    Article  Google Scholar 

  • Clayes, P., Kiessling, W., and Alvarez, W., 2002. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In Koeberl, C., and MacLeod, K. G. (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder: Geological Society of America. Special Paper, Vol. 356, pp. 55–68.

    Chapter  Google Scholar 

  • Davison, T., and Collins, G. S., 2007. The effect of the oceans on the terrestrial crater size-frequency distribution: insight from numerical modeling. Meteoritics and Planetary Science, 42, 1915–1927.

    Article  Google Scholar 

  • Dypvik, H., and Jansa, L., 2003. Sedimentary signatures and processes during marine bolide impacts: a review. Sedimentary Geology, 161, 309–337.

    Article  Google Scholar 

  • Dypvik, H., and Kalleson, E., 2010. Mechanisms of late synimpact to early postimpact crater sedimentation in marine-impact structures. In Reimold, W. U., and Gibson, R. L. (eds.), Large Meteorite Impacts and Planetary Evolution IV. Boulder: Geological Society of America. Special Paper, Vol. 465, pp. 301–318.

    Chapter  Google Scholar 

  • Dypvik, H., Tsikalas, F., and Smelror, M., 2010. The Mjølnir Impact Event and Its Consequences. Heidelberg/Dordrecht/London/New York: Springer. The Springer Series Impact Studies. 318 pp.

    Google Scholar 

  • French, B. M., 1998. Traces of Catastrophe. LPI Contribution, Lunar Planetary Institute, Houston, TX, 954, 120 pp.

    Google Scholar 

  • French, B. M., and Koeberl, C., 2010. The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t and why. Earth-Science Reviews, 98, 123–170.

    Article  Google Scholar 

  • Gault, D. E., and Sonett, C. P., 1982. Laboratory simulations of pelagic asteroidal impact: atmospheric injection, benthic topography, and the surface wave radiation field. In Silver, L. T., and Schultz, P. H. (eds.), Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Boulder: Geological Society of America. Special Paper, Vol. 190, pp. 69–92.

    Chapter  Google Scholar 

  • Gersonde, R., Kyte, F. T., Bleil, U., Diekman, B., Flores, J. A., Gohl, K., Grahl, G., Hagen, R., Kuhn, G., Sierro, F. J., Volker, D., Abelmann, A., and Bostwik, J. A., 1997. Geological record and reconstruction of the Late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature, 390, 357–363.

    Article  Google Scholar 

  • Gersonde, R., Deutsch, A., Ivanov, B. A., and Kyte, F. T., 2002. Oceanic impacts – a growing field of fundamental science. Deep-Sea Research II, 49, 951–957.

    Article  Google Scholar 

  • Gilbert, G. K., 1893. The Moon’s Face. A Study of the Origin of Its Features. Washington, DC: Bulletin of Philosophical Society, Vol. 12, pp. 241–292.

    Google Scholar 

  • Gisler, G., Weaver, R., and Gittings, M., 2010. Calculation of asteroid impacts into deep and shallow water. Pure and Applied Geophysics, 168, 1187–1198.

    Article  Google Scholar 

  • Glimsdal, S., Pedersen, G. K., Langtangen, H. P., Shuvalov, V., and Dypvik, H., 2010. The Mjølnir tsunami. In Dypvik, H., Tsikalas, F., and Smelror, M. (eds.), The Mjølnir Impact Events and Its Consequences. Heidelberg/Dordrecht/London/New York: Springer, Vol. The Springer Series Impact Studies, pp. 257–271.

    Google Scholar 

  • Gohn, G. S., Koeberl, C., Miller, K. G., and Reimold, W. U., 2009. The ICDP-USGS Deep Drilling Project in the Chesapeake Bay Impact Structure: Results From the Eyreville Core Holes. Boulder: The Geological Society of America. Special Paper, Vol. 458.

    Google Scholar 

  • Gulick, S. P., et al., 2008. Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nature Geoscience, 1, 131–135.

    Article  Google Scholar 

  • Jansa, L., 1993. Cometary impacts into ocean: their recognition and the threshold constraint for biological extinctions. Palaeogeography Palaeoclimatology Palaeoecology, 104, 271–286.

    Article  Google Scholar 

  • Korycansky, D. G., and Lynett, P. J., 2005. Offshore breaking of impact tsunami: the Van Dorn effect revisited. Geophysical Research Letters, 32, L10608.

    Article  Google Scholar 

  • Korycansky, D. G., and Lynett, P. J., 2007. Run-up from impact tsunami. Geophysical Journal International, 170, 1076–1088.

    Article  Google Scholar 

  • Kring, D., 2003. Environmental consequences of impact cratering events as a function of ambient conditions on Earth. Astrobiology, 3, 133–152.

    Article  Google Scholar 

  • Kyte, F. T., 1988. The extraterrestrial component in marine sediments: description and interpretation. Paleoceanography, 3, 235–247.

    Article  Google Scholar 

  • Kyte, F. T., Zhou, L., and Wasson, J. T., 1988. New evidence on the size and possible effects of a late Pliocene oceanic asteroid impact. Science, 241, 63–65.

    Article  Google Scholar 

  • Masaitis, V. L., 2002. The middle Devonian Kaluga impact crater (Russia): new interpretation of marine setting. Deep-Sea Research II, 49, 1157–1169.

    Article  Google Scholar 

  • Matsui, T., Imamura, F., Tajika, E., Nakano, Y., and Fujisawa, Y., 2002. Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event. In Koeberl, C., and Macleod, K. G. (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder: Geological Society of America. Special Paper, Vol. 356, pp. 69–77.

    Chapter  Google Scholar 

  • Melosh, H. J., 1982. The Mechanics of Large Meteoroid Impacts in the Earth’s Oceans. Boulder: Geological Society of America. Special Paper, Vol. 190, pp. 121–127.

    Google Scholar 

  • Melosh, H. J., 1989. Impact Cratering: A Geologic Process. New York: Oxford University Press, p. 245.

    Google Scholar 

  • Melosh, H. J., 2003. Impact-generated tsunamis: An overrated hazard. In: 34 Lunar and Planetary Science Conference, League City, TX, # 2013.

    Google Scholar 

  • Morrow, J. R., Sandberg, C. A., Malkowski, K., and Joachmiski, M. M., 2009. Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA. Palaeogeography Palaeoclimatology Palaeoecology, 282, 105–118.

    Article  Google Scholar 

  • NASA, 2012. http://nssdc.gsfc.nasa.gov/planetary/planets/.

  • Oberbeck, V. R., Marshall, J. R., and Aggarwal, H., 1993. Impacts, tillites and the breakup of Gondwanaland. The Journal of Geology, 101, 1–19.

    Article  Google Scholar 

  • Ormö, J., and Lindström, M., 2000. When a cosmic impact strikes the sea bed. Geological Magazine, 137, 67–80.

    Article  Google Scholar 

  • Pope, K. O., Baines, K. H., Ocampo, A. C., and Ivanov, B. A., 1997. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. Journal of Geophysical Research, 102, 21645–21664.

    Article  Google Scholar 

  • Pope, K. O., Ocampo, A. C., Fischer, A. G., Vega, F. J., Ames, D. E., King, D. T., Jr., Fouke, B. W., Wachtman, R. J., and Kletetschka, G., 2005. Chicxulub impact ejecta deposits in southern Quintana Roo, Mexico and central Belize. In Kenkmann, T., Hörz, F., and Deutsch, A. (eds.), Large Meteorite Impacts III. Boulder: Geological Society of America. Special Paper, Vol. 384, pp. 171–190.

    Chapter  Google Scholar 

  • Riis, F., Kalleson, E., Dypvik, H., Krøgli, S. O., and Nilsen, O., 2012. The Ritland impact structure, southwestern Norway. Meteoritics and Planetary Science, 46, 748–761.

    Article  Google Scholar 

  • Schulte, P., et al., 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous -Paleogene boundary. Science, 327, 1214–1218.

    Article  Google Scholar 

  • Shoemaker, E. M., 1962. Interpretation of lunar craters. In Kopal, Z. (ed.), Physics and Astronomy of the Moon. New York/London: Academic, pp. 283–359.

    Google Scholar 

  • Shuvalov, V. V., 2002. Numerical modeling of impacts into shallow seas. In Plado, J., and Pesonen, L. J. (eds.), Impacts in Precambrian Shields. Heidelberg/New York: Springer. Impact Studies, pp. 323–336.

    Chapter  Google Scholar 

  • Shuvalov, V., Dypvik, H., Kalleson, E., SetsÃ¥, R., and Riis, F., 2012. Modeling the 2.7 km in diameter, shallow marine Ritland impact structure. Earth, Moon and Planets, 108, 175–188.

    Article  Google Scholar 

  • Simonson, B. M., and Glass, B. P., 2004. Spherule layers - records of ancient impacts. Annual Review of Earth and Planetary Science, 32, 329–391.

    Article  Google Scholar 

  • Simonson, B. M., Hassler, S. W., Smit, J., and Sumner, D., 2002. How many late Archean impacts are recorded in the Hamersley basin of Western Australia? In Lunar and Planetary Science Conference, League City, TX, 33, #1772.

    Google Scholar 

  • Smit, J., 1999. The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Science, 27, 75–113.

    Article  Google Scholar 

  • Suuroja, K., Suurjoa, S., All, T., and Floden, T., 2002. Kärdla (Hiiumaa Island, Estonia) – the buried and well preserved Ordovician marine impact structure. Deep Sea Research II, 49, 1121–1144.

    Article  Google Scholar 

  • Task Force Group, 2000. Report of the Task Force on Potentially Hazardous Near-Earth Objects. London: Information Unit, British National Space Centre. 56 pp.

    Google Scholar 

  • Ward, S. N., and Asphaug, E., 2000. Asteroid impact tsunami: a probabilistic hazard assessment. Icarus, 145, 64–78.

    Article  Google Scholar 

  • Ward, S. N., and Asphaug, E., 2002. Impact tsunami – Eltanin. Deep-Sea Research II, 49, 1073–1079.

    Article  Google Scholar 

  • Warme, J. E., 2004. The many faces of the Alamo impact breccia. Geotimes, 49, 26–29.

    Google Scholar 

  • Wünnemann, K., and Lange, M. A., 2002. Numerical modelling of impact induced modifications of the deep-sea floor. Deep-Sea Research II, 49, 969–981.

    Article  Google Scholar 

  • Wünnemann, K., Weiss, R., and Hofmann, K., 2007. Characteristics of oceanic impact-induced large water waves – re-evaluation of the tsunami hazard. Meteoritics and Planetary Science, 42, 1893–1903.

    Article  Google Scholar 

Download references

Acknowledgments

L. Thompson kindly helped with the impact crater statistics (http://www.passc.net/EarthImpactDatabase/), while P. Claeys, V. Shuvalov, and A. J. Read commented on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Dypvik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Dypvik, H. (2015). Marine Impacts and Their Consequences. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6644-0_69-4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6644-0_69-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6644-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Marine Impacts and Their Consequences
    Published:
    31 January 2015

    DOI: https://doi.org/10.1007/978-94-007-6644-0_69-4

  2. Original

    Marine Impacts and Their Consequences
    Published:
    07 June 2014

    DOI: https://doi.org/10.1007/978-94-007-6644-0_69-3