Skip to main content

Toxic but Exploitable Actions of Ribosome-Inactivating Proteins

  • Reference work entry
  • First Online:
Plant Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

Ribosome-inactivating proteins are produced by a wide range of organisms including bacteria, fungi, and plants. The vast majority of ribosome-inactivating proteins have been reported from plants. There are two major types. Type 1 ribosome-inactivating proteins are single-chain proteins with a molecular weight in the vicinity of 30 kDa. Type 2 ribosome-inactivating proteins with a molecular weight close to 60 kDa are composed of a ribosome-inactivating protein chain and a lectin chain. Ribosome-inactivating proteins are characterized by RNA N-glycosidase activity and the ability to inhibit translation in a cell-free rabbit reticulocyte lysate system. Their toxic actions, including antiviral, antibacterial, antifungal, antiparasite, entomotoxic, embryotoxic, and anticancer activities, are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adwan H, Bayer H, Pervaiz A, Sagini M, Berger MR. Ribosome inactivating proteinroximin is a recently discovered type II ribosome inactivating protein with potential for treating cancer. Biotechnol Adv. 2014;32(6):1077–90.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri L, Polito L, Bolognesi A, Ciani M, Pelosi E, Farini V, Jha AK, Sharma N, Vivanco JM, Chambery A, Parente A, Stirpe F. Ribosome inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochim Biophys Acta. 2006;1760(5):783–92.

    Article  CAS  PubMed  Google Scholar 

  • Battelli MG, Montacuti V, Stirpe F. High sensitivity of cultured human trophoblasts to ribosome inactivating proteins. Exp Cell Res. 1992;201(1):109–12.

    Article  CAS  PubMed  Google Scholar 

  • Bertholdo-Vargas LR, Martins JN, Bordin D, Salvador M, Schafer AE, Barros NM, Barbieri L, Stirpe F, Carlini CR. Type 1 ribosome inactivating proteins – entomotoxic, oxidative and genotoxic action on Anticarsia gemmatalis (Hübner) and Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). J Insect Physiol. 2009;55(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  • Brandhorst T, Dowd PF, Kenealy WR. The ribosome-inactivating protein restrictocin deters insect feeding on Aspergillus restrictus. Microbiology. 1996;142(Pt 6):1551–6.

    Article  CAS  PubMed  Google Scholar 

  • Chan WY, Ng TB. Comparison of the embryotoxic effects of saporin, agrostin (type 1ribosome inactivating proteins) and ricin (a type 2 ribosome-inactivating protein). Pharmacol Toxicol. 2001;88(6):300–3.

    Article  CAS  PubMed  Google Scholar 

  • Chopra R, Saini R. Transformation of blackgram (Vigna mungo (L.) Hepper) by barley chitinase and ribosome-inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease. Appl Biochem Biotechnol. 2014;174(8):2791–800.

    Article  CAS  PubMed  Google Scholar 

  • Chuang WP, Herde M, Ray S, Castano-Duque L, Howe GA, Luthe DS. Caterpillar attack triggers accumulation of the toxic maize protein ribosome inactivating protein 2. New Phytol. 2014;201(3):928–39.

    Article  CAS  PubMed  Google Scholar 

  • Citores L, Iglesias R, Gay C, Ferreras JM. Antifungal activity of the ribosome inactivating protein 545 BE27 from sugar beet (Beta vulgaris L.) against the green mould Penicillium digitatum. Mol 546 Plant Pathol. 2016;17(2):261–71.

    Google Scholar 

  • Dowd PF, Johnson ET, Price NP. Enhanced pest resistance of maize leaves expressing monocot crop plant-derived ribosome-inactivating protein and agglutinin. J Agric Food Chem. 2012;60(43):10768–75.

    Article  CAS  PubMed  Google Scholar 

  • Guo CX, He YW, Peng C, Lei YC, Li WT. The effects of different PAP domains on hepatitis B virus replication. Zhonghua Gan Zang Bing Za Zhi. 2010;18:105–8.

    CAS  PubMed  Google Scholar 

  • Guo JL, Cheng YL, Qiu Y, Shen CH, Yi B, Peng C. Purification and characterization of a novel type 1 ribosome inactivating protein, pachyerosin, from Pachyrhizus erosus seeds, and preparation of its immunotoxin against human hepatoma cells. Planta Med. 2014;80:896–901.

    Article  CAS  PubMed  Google Scholar 

  • He DX, Tam SC. Trichosanthin affects HSV-1 replication in Hep-2 cells. Biochem Biophys Res Commun. 2010;402:670–5.

    Article  CAS  PubMed  Google Scholar 

  • Higgins SC, Fillmore HL, Ashkan K, Butt AM, Pilkington GJ. Dual targeting NG2 and GD3A using Mab-Zap immunotoxin results in reduced glioma cell viability in vitro. Anticancer Res. 2015;35:77–84.

    CAS  PubMed  Google Scholar 

  • Huang PL, Chen HC, Kung HF, Huang PL, Huang P, Huang HI, Lee-Huang S. Anti-HIV plant proteins catalyze topological changes of DNA into inactive forms. Biofactors. 1992;4(1):37–41.

    CAS  PubMed  Google Scholar 

  • Iglesias R, Citores L, Di Maro A, Ferreras JM. Biological activities of the antiviral protein BE27 from sugar beet (Beta vulgaris L.). Planta. 2015;241:421–33.

    Article  CAS  PubMed  Google Scholar 

  • Ishag HZ, Li C, Huang L, Sun MX, Ni B, Guo CX, Mao X. Inhibition of Japanese encephalitis virus infection in vitro and in vivo by pokeweed antiviral protein. Virus Res. 2013;171(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  • Kaur I, Puri M, Ahmed Z, Blanchet FP, Mangeat B, Piguet V. Inhibition of HIV-1 replication by balsamin, a ribosome inactivating protein of Momordica balsamina. PLoS One. 2013;8:e73780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH, Ahn IP, Nahm H. Coexpression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res. 2003;12(4):475–84.

    Article  CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem Biophys Res Commun. 2001a;285(4):1071–5.

    Article  CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB. First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch Biochem Biophys. 2001b;393(2):271–80.

    Article  CAS  PubMed  Google Scholar 

  • Ng TB, Lam JS, Wong JH, Lam SK, Ngai PH, Wang HX, Chu KT, Chan WY. Differential abilities of the mushroom ribosome inactivating proteins hypsin and velutin to perturb normal development of cultured mouse embryos. Toxicol In Vitro. 2010;24(4):1250–7.

    Article  CAS  PubMed  Google Scholar 

  • Nicolas E, Goodyer ID, Taraschi TF. An additional mechanism of ribosome inactivating protein cytotoxicity: degradation of extrachromosomal DNA. Biochem J. 1997;327(Pt 2):413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen K, Payne GA, Boston RS. Maize ribosome-inactivating protein inhibits normal development of Aspergillus nidulans and Aspergillus flavus. Mol Plant Microbe Interact. 2001;14(2):164–72.

    Article  CAS  PubMed  Google Scholar 

  • Nuchsuk C, Wetprasit N, Roytrakul S, Choowongkomon K, Thienprasert N, Yokthongwattana C, Arpornsuwan T, Ratanapo S. Bioactivities of Jc-, a type 1 ribosome-inactivating protein from Jatropha curcas seed coat. Chem Biol Drug Des. 2013;82:453–62.

    Article  CAS  PubMed  Google Scholar 

  • Orlandi R, Canevari S, Conde FP, Leoni F, Mezzanzanica D, Ripamonti M, Colnaghi MI. Immunoconjugate generation between the ribosome inactivating protein restrictocin and an anti-human breast carcinoma MAB. Cancer Immunol Immunother. 1988;26(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  • Osuna A, Rodriguez-Cabezas N, Gamarro F, Mascaro C. The different behavior of diphtheria toxin, modeccin and ricin in HeLa cells infected with Trypanosoma cruzi. J Eukaryot Microbiol. 1994;41(3):231–6.

    Article  CAS  PubMed  Google Scholar 

  • Otsuka H, Gotoh Y, Komeno T, Ono T, Kawasaki Y, Iida N, Shibagaki Y, Hattori S, Tomatsu M, Akiyama H, Tashiro F. Aralin, a type II ribosome-inactivating protein from Aralia elata, exhibits selective anticancer activity through the processed form of a 110-kDa high-density lipoprotein-binding protein: a promising anticancer drug. Biochem Biophys Res Commun. 2014;453:117–23.

    Article  CAS  PubMed  Google Scholar 

  • Pan WL, Wong JH, Fang EF, Chan YS, Ye XJ, Ng TB. Differential inhibitory potencies and mechanisms of the type I ribosome inactivating protein marmorin on estrogen receptor (ER)-positive and ER-negative breast cancer cells. Biochim Biophys Acta. 2013;1833:987–96.

    Article  CAS  PubMed  Google Scholar 

  • Pan WL, Wong JH, Fang EF, Chan YS, Ng TB, Cheung RC. Preferential cytotoxicity of the type I ribosome inactivating protein alpha-momorcharin on human nasopharyngeal carcinoma cells under normoxia and hypoxia. Biochem Pharmacol. 2014;89:329–39.

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Stevens NM, Vivanco JM. Enzymatic specificity of three ribosome inactivating proteins against fungal ribosomes, and correlation with antifungal activity. Planta. 2002;216(2):227–34.

    Article  CAS  PubMed  Google Scholar 

  • Parkash A, Ng TB, Tso WW. Isolation and characterization of luffacylin, a ribosome inactivating peptide with anti-fungal activity from sponge gourd (Luffa cylindrica) seeds. Peptides. 2002;23(6):1019–24.

    Article  CAS  PubMed  Google Scholar 

  • Rao Q, Guo W, Chen X. Identification and characterization of an antifungal protein, AfAFPR9, produced by marine-derived Aspergillus fumigatus R9. J Microbiol Biotechnol. 2015;25(5):620–8.

    Article  CAS  PubMed  Google Scholar 

  • Rothan HA, Bahrani H, Mohamed Z, Abd Rahman N, Yusof R. Fusion of protegrin-1 and plectasin to MAP30 shows significant inhibition activity against dengue virus replication. PLoS One. 2014a;9(4):e94561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothan HA, Bahrani H, Shankar EM, Rahman NA, Yusof R. Inhibitory effects of a peptide-fusion protein (Latarcin-PAP1-Thanatin) against chikungunya virus. Antivir Res. 2014b;108:173–80.

    Article  CAS  PubMed  Google Scholar 

  • Ruan XL, Liu LF, Li HP. Transgenic tobacco plants with ribosome inactivating protein gene cassin from Cassia occidentalis and their resistance to tobacco mosaic virus. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2007;33(6):517–23.

    CAS  PubMed  Google Scholar 

  • Shahidi Noghabi S, Van Damme E, Smagghe G. Bioassays for insecticidal activity of iris ribosome inactivating proteins expressed in tobacco plants. Commun Agric Appl Biol Sci. 2006;71(1):285–9.

    PubMed  Google Scholar 

  • Shahidi-Noghabi S, Van Damme EJ, Mahdian K, Smagghe G. Entomotoxic action of Sambucus nigra agglutinin I in Acyrthosiphon pisum aphids and Spodoptera exigua caterpillars through caspase-3-like-dependent apoptosis. Arch Insect Biochem Physiol. 2010;75(3):207–20.

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F. Ribosome inactivating proteins: from toxins to useful proteins. Toxicon. 2013;67:12–6.

    Article  CAS  PubMed  Google Scholar 

  • Vivanco JM, Tumer NE. Translation inhibition of capped and uncapped viral RNAs mediated by ribosome inactivating proteins. Phytopathology. 2003;93:588–95.

    Article  CAS  PubMed  Google Scholar 

  • Walski T, Van Damme EJ, Smagghe G. Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum. J Insect Physiol. 2014;70:94–101.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang Y, Liu H, He Y, Yan J, Wu Z, Ding Y. Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia. Appl Microbiol Biotechnol. 2012;96(4):939–50.

    Article  PubMed  Google Scholar 

  • Wang RR, Au KY, Zheng HY, Gao LM, Zhang X, Luo RH, Law SK, Mak AN, Wong KB, Zhang MX, Pang W, Zhang GH, Shaw PC, Zheng YT. The recombinant maize ribosome-inactivating protein transiently reduces viral load in SHIV89.6 infected Chinese Rhesus Macaques. Toxins (Basel). 2015;7(1):156–69.

    Article  Google Scholar 

  • Wei GQ, Liu RS, Wang Q, Liu WY. Toxicity of two type II ribosome inactivating proteins (cinnamomin and ricin) to domestic silkworm larvae. Arch Insect Biochem Physiol. 2004;57(4):160–5.

    Article  CAS  PubMed  Google Scholar 

  • Wong JH, Wang HX, Ng TB. Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl Microbiol Biotechnol. 2008;81(4):669–74.

    Article  CAS  PubMed  Google Scholar 

  • Wu JH, Wu AM, Yang Z, Chen YY, Singha B, Chow LP, Lin JY. Recognition intensities of submolecular structures, mammalian glyco-structural units, ligand cluster and polyvalency in abrin-a-carbohydrate interactions. Biochimie. 2010;92(2):147–56.

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Batra JK. Ribotoxin restrictocin manifests anti-HIV-1 activity through its specific ribonuclease activity. Int J Biol Macromol. 2015;76:58–62.

    Article  CAS  PubMed  Google Scholar 

  • Zhabokritsky A, Mansouri S, Hudak KA. Pokeweed antiviral protein alters splicing of HIV-1 RNAs, resulting in reduced virus production. RNA. 2014;20(8):1238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Zhang P, Meng YF, Xu F, Zhang DW, Cheng J, Lin HH, Xi DH. Alpha- momorcharin, a ribosome inactivating protein produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro. Planta. 2013;237:77–88.

    Article  CAS  PubMed  Google Scholar 

  • Zoubenko O, Hudak K, Tumer NE. A non-toxic pokeweed antiviral protein mutant inhibits pathogen infection via a novel salicylic acid-independent pathway. Plant Mol Biol. 2000;44(2):219–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the award of an HMRF grant (number 12131221) from Health and Medical Research Fund, Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzi Bun Ng or Wai Yee Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ng, T.B., Ng, C.C.W., Chan, W.Y. (2017). Toxic but Exploitable Actions of Ribosome-Inactivating Proteins. In: Carlini, C., Ligabue-Braun, R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6464-4_11

Download citation

Publish with us

Policies and ethics