Skip to main content

Evolutionary History of Venom Glands in the Siluriformes

  • Reference work entry
  • First Online:
Evolution of Venomous Animals and Their Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

The order Siluriformes represents a hyperdiverse group of fishes (>3,000 currently recognized species), which has been known to contain venomous species diversity for over 250 years. In spite of this historical knowledge, scientific examinations of the basic characteristics and evolutionary history of these species’ venom glands, and their products, have been extremely sparse compared to those of terrestrial venomous organisms, or even venomous fishes in general. Here, the current state of knowledge regarding the venom glands of catfishes and their products is examined in a review of morphological, pharmacological, and chemical studies of these structures. Several hypotheses regarding the evolution of siluriform venom glands are able to be drawn from the information contained in these studies as well as the limited work that has attempted to study the evolution of these structures in detail. These include selective scenarios to explain the secondary losses of venom glands in several catfish species and families, compositional variation in siluriform venom chemistry, and the derivation of venom glands from secretory cells of the epidermis. Future work directly addressing multiple issues of venom production and composition in catfishes is necessary before investigations of the evolution of siluriform venoms and delivery structures can reach the levels of detail and sophistication seen in other venomous groups. These studies will benefit greatly from the advent of genomic, transcriptomic, and proteomic methods, which have seen wide use in examinations of venoms produced by other taxa, but have yet to be widely applied to analyses of piscine venoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hassan JM, Thomson M, Criddle R. Accelerated wound healing by a preparation from skin of the Arabian Gulf catfish. Lancet. 1983;321(8332):1043–4.

    Article  Google Scholar 

  • Al-Hassan JM, Thomson M, Criddle KR, Summers BS, Criddle RS. Catfish epidermal secretions in response to threat or injury: a novel defense response. Mar Biol. 1985;88(2):117–23.

    Article  CAS  Google Scholar 

  • Al-Hassan JM, Ali M, Thomson M, Fatima T, Gubler CJ. Prostaglandin associated mortality following intravenous injection of catfish epidermal secretions in rabbits. Prostaglandins Leukot Med. 1987;28(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  • Auddy B, Gomes A. Indian catfish (Plotosus canius, Hamilton) venom. Occurrence of lethal protein toxin (toxin-PC). Adv Exp Med Biol. 1996;391:225–9.

    Article  CAS  PubMed  Google Scholar 

  • Bertelsen E, Nielsen JG. The deep sea eel family Monognathidae (Pisces, Anguilliformes). Steenstrupia. 1987;13(4):141–98.

    Google Scholar 

  • Birkhead WS. The comparative toxicity of stings of the ictalurid catfish genera Ictalurus and Schilbeodes. Comp Biochem Physiol. 1967;22(1):101–11.

    Article  CAS  PubMed  Google Scholar 

  • Birkhead WS. Toxicity of stings of ariid and ictalurid catfishes. Copeia. 1972;1972(4):790–807.

    Article  Google Scholar 

  • Bosher BT, Newton SH, Fine ML. The spines of the channel catfish, Ictalurus punctatus, as an anti-predator adaptation: an experimental study. Ethology. 2006;112:188–95.

    Article  Google Scholar 

  • Calton GJ, Burnett JW. Catfish (Ictalurus catus) fin venom. Toxicon. 1975;13:399–403.

    Article  CAS  PubMed  Google Scholar 

  • Cameron AM, Endean R. The axillary glands of the plotosid catfish Cnidoglanis macrocephalus. Toxicon. 1971;9:345–52.

    Article  CAS  PubMed  Google Scholar 

  • Cameron AM, Endean R. Epidermal secretions and the evolution of venom glands in fishes. Toxicon. 1973;11:401–10.

    Article  CAS  PubMed  Google Scholar 

  • Casewell NR, WĂĽster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2012;28(4):219–29.

    Article  PubMed  Google Scholar 

  • Church JE, Hodgson WC. The pharmacological activity of fish venoms. Toxicon. 2002;40:1083–93.

    Article  CAS  PubMed  Google Scholar 

  • Diogo R. Morphological evolution, adaptations, homoplasies, constraints, and evolutionary trends: catfishes as a case study on general phylogeny and macroevolution. Enfield: Science Publishers; 2004.

    Google Scholar 

  • Egge JJD, Simons AM. Evolution of venom delivery structures in madtom catfishes (Siluriformes: Ictaluridae). Biol J Linn Soc. 2011;102(1):115–29.

    Article  Google Scholar 

  • Emmett B, Cochran PA. The response of a piscivore (Micropterus salmoides) to a venomous prey species (Noturus gyrinus). J Freshw Ecol. 2010;25(3):475–9.

    Article  Google Scholar 

  • Fahim FA, Mady EA, Ahmed SM, Zaki MA. Biochemical studies on the effect of Plotosus lineatus crude venom (in vivo) and its effect on EAC-cells (in vitro). Adv Exp Med Biol. 1996;391:343–55.

    Article  CAS  PubMed  Google Scholar 

  • Ferraris CJ. Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of siluriform primary types. Zootaxa. 2007;1418:1–628.

    Article  Google Scholar 

  • Fine ML, Sismour EN, Newton SH, Bosher BT, Sullivan ADH, Miano JP, Ghahramani ZN, Mohajer YJ, Nellis S. A primer on functional morphology and behavioral ecology of the pectoral spine of the channel catfish. In: Michaletz, PH, Travnichek VH, editors. Conservation, ecology, and management of catfish: the second international symposium. American Fisheries Society Symposium 77. Bethesda: American Fisheries Society; 2011.

    Google Scholar 

  • Fry BG, WĂĽster W, Ramjan SFR, Jackson T, Martelli P, Kini RM. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Rapid Commun Mass Spectrom. 2003;17(18):2047–62.

    Article  CAS  PubMed  Google Scholar 

  • Greven H, Flasbeck T, Passia D. Axillary glands in the armoured catfish Corydoras aeneus. Verh Ges Ichthyol Band. 2006;5:65–9.

    Google Scholar 

  • GĂĽnther A. An introduction to the study of fishes. London: Oxford University; 1880.

    Book  Google Scholar 

  • Haddad V, Martins IA. Frequency and gravity of human envenomations caused by marine catfish (suborder siluroidei): a clinical and epidemiological study. Toxicon. 2006;47(8):838–43.

    Article  CAS  PubMed  Google Scholar 

  • Haddad V, de Souza RA, Auerbach PS. Marine catfish sting causing fatal heart perforation in a fisherman. Wilderness Environ Med. 2008;19(2):114–8.

    Article  PubMed  Google Scholar 

  • Halstead BW. Poisonous and venomous marine animals of the world. 2nd rev ed. Princeton: The Darwin Press: 1988.

    Google Scholar 

  • Halstead BW, Smith RL. Presence of an axillary venom gland in the Oriental catfish Plotosus lineatus. Copeia. 1954;1954(2):153–4.

    Article  Google Scholar 

  • Halstead BW, Kuninobu LS, Hebard HG. Catfish stings and the venom apparatus of the Mexican catfish, Galeichthys felis (Linnaeus). Trans Am Microscopal Soc. 1953;72:297–314.

    Article  Google Scholar 

  • Hardman M. The phylogenetic relationships among non-diplomystid catfishes as inferred from mitochondrial cytochrome b sequences; the search for the ictalurid sister taxon (Otophysi: Siluriformes). Mol Phylogenet Evol. 2005;37(3):700–20.

    Article  CAS  PubMed  Google Scholar 

  • Heatwole H, Powell J. Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): a test of coevolution. Toxicon. 1998;36(4):619–25.

    Article  CAS  PubMed  Google Scholar 

  • Junqueira MEP, Grund LZ, Orii NM, Saraiva TC, Lopes AM, Lima C, Lopes-Ferreira M. Analysis of the inflammatory reaction induced by the catfish (Cathrops spixii) venoms. Toxicon. 2007;49(7):909–19.

    Article  CAS  PubMed  Google Scholar 

  • Kiehl E, Rieger C, Greven H. Axillary gland secretions contribute to the stress-induced discharge of a bactericidal substance in Corydoras sterbai (Callichthyidae, Siluriformes). Verh Ges Ichthyol Band. 2006;5:111–5.

    Google Scholar 

  • Kourie JI. A component of platypus (Ornithorhynchus anatinus) venom forms slow-kinetic cation channels. J Membr Biol. 1999;172(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  • Nelson JS. Fishes of the world. 4th ed. New York: Wiley; 2006.

    Google Scholar 

  • Pawlak M, Stankowski S, Schwarz G. Melittin induced voltage-dependent conductance in DOPC lipid bilayers. Biochim Biophys Acta. 1991;1062(1):94–102.

    Article  CAS  PubMed  Google Scholar 

  • Perrière C, Goudey-Perrière F. Poisonous catfishes: venom apparatus, acanthotoxins, crinotoxins and other skin secretions. In: Arratia G, Kapoor BG, Chardon M, Diogo R, editors. Catfishes, vol. 1. Enfield: Science Publishers; 2003.

    Google Scholar 

  • Reed HD. The poison glands of Noturus and Schilbeodes. Am Nat. 1907;41:553–66.

    Article  Google Scholar 

  • Robinette D, Wada S, Arrol T, Levy MG, Miller WL, Noga EJ. Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: characterization of broad-spectrum histone-like antimicrobial proteins. Cell Mol Life Sci. 1998;54:467–75.

    Article  CAS  PubMed  Google Scholar 

  • Scanlon J, Lee MY. Phylogeny of Australasian venomous snakes (Colubroidea, Elapidae, Hydrophiinae) based on phenotypic and molecular evidence. Zool Scr. 2004;33(4):335–66.

    Article  Google Scholar 

  • Shiomi K, Takamiya M, Yamanaka H, Kikuchi T. Purification of a lethal factor in the skin secretion from the oriental catfish (Plotosus lineatus). Nippon Suison Gakkaishi. 1987;53:1275–80.

    Article  CAS  Google Scholar 

  • Shiomi K, Takamiya M, Yamanaka H, Kikuchi T, Suzuki Y. Toxins in the skin secretion of the Oriental catfish (Plotosus lineatus): immunological properties and immunocytochemical identification of producing cells. Toxicon. 1988;26:353–61.

    Article  CAS  PubMed  Google Scholar 

  • Sivan G. Fish venom: pharmacological features and biological significance. Fish Fish. 2009;10:159–72.

    Article  Google Scholar 

  • Smith WL, Wheeler WC. Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. J Hered. 2006;97:206–17.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JP, Lundberg JG, Hardman M. A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Mol Phylogenet Evol. 2006;41(3):636–62.

    Article  CAS  PubMed  Google Scholar 

  • Thomson M, Al-Hassan JM, Fayad S, Al-Saleh J, Ali M. Purification of a toxic factor from Arabian Gulf catfish epidermal secretions. Toxicon. 1998;36(6):859–66.

    Article  CAS  PubMed  Google Scholar 

  • Trim SA, Trim CM. Venom: the sharp end of pain therapeutics. Br J Pain. 2013;7(4):179–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitear M, Zaccone G, Ricca MB, Lo CP. Fine structure and histochemistry of the venom gland in the Indian stinging catfish (Heteropneustes fossilis). J Zool. 1991a;224:479–89.

    Article  Google Scholar 

  • Whitear M, Zaccone G, Fasulo S, Licata A. Fine structure of the axillary gland of the brown bullhead (Ictalurus nebulosus). J Zool. 1991b;224:669–76.

    Article  Google Scholar 

  • Wright JJ. Diversity, phylogenetic distribution, and origins of venomous catfishes. BMC Evol Biol. 2009;9:282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright JJ. Conservative coevolution of MĂĽllerian mimicry in a group of rift lake catfish. Evolution. 2011;65(2):395–407.

    Article  PubMed  Google Scholar 

  • Wright JJ. Adaptive significance of venom glands in the tadpole madtom Noturus gyrinus (Siluriformes: Ictaluridae). J Exp Biol. 2012a;215(11):1816–23.

    Article  CAS  PubMed  Google Scholar 

  • Wright JJ. The evolutionary ecology of venomous catfishes, with a focus on members of the north American family Ictaluridae (Teleostei: Siluriformes). Ann Arbor: University of Michigan; 2012b.

    Google Scholar 

  • Zaccone G, Tagliaferro G, Fasulo S, Contini A, Ainis L, Licata A. Serotonin-like immunoreactivity in the epidermal club cells of teleost fishes. Histochemistry. 1990;93:355–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy J. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Wright, J.J. (2017). Evolutionary History of Venom Glands in the Siluriformes. In: Malhotra, A. (eds) Evolution of Venomous Animals and Their Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_9

Download citation

Publish with us

Policies and ethics