Skip to main content

Structure Function Studies of Large Clostridial Cytotoxins

  • Reference work entry
  • First Online:
Microbial Toxins

Part of the book series: Toxinology ((TOXI))

Abstract

The large clostridial toxins (LCTs) are a group of homologous, high molecular weight proteins that include toxin A and toxin B from Clostridium difficile (TcdA and TcdB), the lethal and hemorrhagic toxins from C. sordellii (TcsL and TcsH), α-toxin from C. novyi (Tcnα), and a large cytotoxin from C. perfringens (TpeL). The LCTs share a glycosyltransferase enzymatic activity that results in the inactivation of specific Rho and Ras GTPases, essential signaling proteins and regulators within eukaryotic cells. The importance of these toxins in the context of disease has led many to apply structural and functional approaches to the understanding of LCT mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amimoto K, et al. The protective effect of Clostridium novyi type B alpha-toxoid against challenge with spores in guinea pigs. J Vet Med Sci. 1998;60:681–5.

    Article  CAS  PubMed  Google Scholar 

  • Amimoto K, Noro T, Oishi E, Shimizu M. A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology. 2007;153(4):1198–206.

    Article  CAS  PubMed  Google Scholar 

  • Aronoff DM. Clostridium novyi, sordellii, and tetani: mechanisms of disease. Anaerobe. 2013;24:98–101.

    Article  CAS  PubMed  Google Scholar 

  • Beilhartz GL, Tam J, Melnyk RA. Small molecules take a big step against Clostridium difficile. Trends Microbiol. 2015;23(12):746–8.

    Article  CAS  PubMed  Google Scholar 

  • Bender KO, et al. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med. 2015;7(306):306ra148.

    Article  PubMed  Google Scholar 

  • Carter GP, et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. MBio. 2015;6(3):1–10.

    Article  Google Scholar 

  • Chumbler NM, et al. Clostridium difficile toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism. PLoS Pathog. 2012;8(12):e1003072. https://doi.org/10.1371/journal.ppat.1003072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chumbler NM, et al. Crystal structure of Clostridium difficile toxin A. Nat Microbiol. 2016;1(1):15002.

    Article  CAS  PubMed Central  Google Scholar 

  • Coursodon CF, Glock RD, Moore KL, Cooper KK, Songer JG. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe. 2012;18(1):117–21.

    Article  CAS  PubMed  Google Scholar 

  • Craven R, Lacy DB. Clostridium sordellii lethal-toxin autoprocessing and membrane localization activities drive GTPase glucosylation profiles in endothelial cells. mSphere. 2015;1(1):1–9.

    Google Scholar 

  • Darkoh C, Brown EL, Kaplan HB, DuPont HL. Bile salt inhibition of host cell damage by Clostridium difficile toxins. PLoS One. 2013;8(11):1–9.

    Article  Google Scholar 

  • Farrow MA, et al. Clostridium difficile toxin B-induced necrosis is mediated by the host epithelial cell NADPH oxidase complex. Proc Natl Acad Sci U S A. 2013;110(46):18674–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frädrich C, Beer LA, Gerhard R. Reactive oxygen species as additional determinants for cytotoxicity of Clostridium difficile toxins A and B. Toxins. 2016;8(1):1–12.

    Article  Google Scholar 

  • Genth H, et al. Haemorrhagic toxin and lethal toxin from Clostridium sordellii strain vpi9048: molecular characterization and comparative analysis of substrate specificity of the large clostridial glucosylating toxins. Cell Microbiol. 2014;16(11):1706–21.

    Article  CAS  PubMed  Google Scholar 

  • Guttenberg G, et al. Inositol hexakisphosphate-dependent processing of Clostridium sordellii lethal toxin and Clostridium novyi alpha-toxin. J Biol Chem. 2011;286(17):14779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttenberg G, et al. Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells. J Biol Chem. 2012;287(30):24929–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halabi-Cabezon I, et al. Prevention of the cytopathic effect induced by Clostridium difficile toxin B by active Rac1. FEBS Lett. 2008;582(27):3751–6.

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Aktories K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol. 2008;16(5):222–9.

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Giesemann T, Aktories K. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology. 2007;17(4):15–22.

    Article  Google Scholar 

  • Jank T, Belyi Y, Aktories K. Bacterial glycosyltransferase toxins. Cell Microbiol. 2015;17(12):1752–65.

    Article  CAS  PubMed  Google Scholar 

  • Kreimeyer I, et al. Autoproteolytic cleavage mediates cytotoxicity of Clostridium difficile toxin A. Naunyn Schmiedebergs Arch Pharmacol. 2011;383(3):253–62.

    Article  CAS  PubMed  Google Scholar 

  • LaFrance ME, et al. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proc Natl Acad Sci U S A. 2015;112(22):7073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laughlin MR, Petit WA, Dizon JM, Shulman RG, Barrett EJ. NMR measurements of in vivo myocardial glycogen metabolism. J Biol Chem. 1988;263(5):2285–91.

    CAS  PubMed  Google Scholar 

  • Li S, Shi L, Yang Z, Feng H. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol. Pathog Dis. 2013;67(1):11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowy I, et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med. 2010;362(3):197–205.

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, et al. Clostridium perfringens TpeL glycosylates the Rac and Ras subfamily proteins. Infect Immun. 2011;79(2):905–10.

    Article  CAS  PubMed  Google Scholar 

  • Pruitt RN, Lacy DB. Toward a structural understanding of Clostridium difficile toxins A and B. Front Cell Infect Microbiol. 2012;2:1–14.

    Article  Google Scholar 

  • Pruitt RN, Chambers MG, Ng KK-S, Ohi MD, Lacy DB. Structural organization of the functional domains of Clostridium difficile toxins A and B. Proc Natl Acad Sci U S A. 2010;107(30):13467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupnik M. An update on Clostridium difficile toxinotyping. J Clin Microbiol. 2016;54(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  • Schorch B, et al. LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Proc Natl Acad Sci U S A. 2014;111(17):6431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz F, Just I, Genth H. Prevention of Clostridium sordellii lethal toxin-induced apoptotic cell death by tauroursodeoxycholic acid. Biochemistry. 2009;48(38):9002–10.

    Article  CAS  PubMed  Google Scholar 

  • Shen A, et al. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat Struct Mol Biol. 2011;18(3):364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater LH, et al. Identification of novel host-targeted compounds that protect from anthrax lethal toxin-induced cell death. ACS Chem Biol. 2013;8(4):825–32.

    Article  Google Scholar 

  • Smith SME, et al. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits. Chem Biol. 2012;19(6):752–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nat Rev Dis Prim. 2016;2:16020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sougioultzis S, et al. Clostridium difficile toxoid vaccine in recurrent C. difficile-associated diarrhea. Gastroenterology. 2005;128(3):764–70.

    Article  PubMed  Google Scholar 

  • Tam J, et al. Small molecule inhibitors of Clostridium difficile toxin B-induced cellular damage. Chem Biol. 2015;22(2):175–85.

    Article  CAS  PubMed  Google Scholar 

  • Varela Chavez C, et al. The tip of the four N-Terminal α-helices of Clostridium sordellii lethal toxin contains the interaction site with membrane phosphatidylserine facilitating small GTPases glucosylation. Toxins. 2016;8(4):90. doi:10.3390/toxins8040090.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan P, et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 2015;25(2):157–68.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, et al. Translocation domain mutations affecting cellular toxicity identify the Clostridium difficile toxin B pore. Proc Natl Acad Sci U S A. 2014;111(10):3721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler MOP, Jank T, Aktories K, Schulz GE. Conformational changes and reaction of clostridial glycosylating toxins. J Mol Biol. 2008;377(5):1346–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the Lacy laboratory is supported by United States Department of Veterans Affairs Award BX002943, Public Health Service grant AI095755 from the National Institutes of Health, and the Burroughs Wellcome Fund through an Investigators in the Pathogenesis of Infectious Disease Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph W. Alvin or D. Borden Lacy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science + Business Media B.V. (outside the USA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alvin, J.W., Lacy, D.B. (2018). Structure Function Studies of Large Clostridial Cytotoxins. In: Stiles, B., Alape-Girón, A., Dubreuil, J., Mandal, M. (eds) Microbial Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6449-1_26

Download citation

Publish with us

Policies and ethics