Skip to main content

Dendrochronology, Progress

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Definition

Dendrochronology derives from the Greek words “dendron” (tree) and “chronology” (study of time), and it allows for the precise dating of annual tree rings based on the analysis of tree-ring patterns among several trees. Dendrochronology combined with other disciplines has allowed for substantial progress in environmental studies (see Cross-References).

Introduction

During recent years, dendrochronologists have faced the challenge of getting more information from tree rings, pushing its own limits to understand a wider range of climatic/environmental factors, to obtain seasonal resolution, and to reconstruct larger spatial scales and longer temporal time spans of climate variability. This is important because instrumental records cover only a limited time period and are insufficient for characterizing decadal and centennial climatic features. Different strategies are being explored to address these challenges. First, different standardization approaches have been designed to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Anchukaitis, K. J., Evans, M. N., Lange, T., Smith, D. R., Leavitt, S. W., and Schrag, D. P., 2008. Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses. Analytical Chemistry, 80, 2035–2041.

    Article  Google Scholar 

  • Anchukaitis, K. J., D’Arrigo, R. D., and Andreu-Hayles, L., 2013. Tree-ring-reconstructed summer temperatures from Northwestern North America during the last nine centuries. Journal of Climate, 26, 3001–3012.

    Article  Google Scholar 

  • Andreu, L., Planells, O., Gutiérrez, E., Helle, G., and Schleser, G. H., 2008. Climatic significance of tree-ring width and δ13C in a Spanish pine forest network. Tellus Series B Chemical and Physical Meteorology, 60, 771–781.

    Article  Google Scholar 

  • Andreu-Hayles, L., Planells, O., Gutiérrez, E., Muntan, E., Helle, G., Anchukaitis, K. J., and Schleser, G. H., 2011. Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Global Change Biology, 17, 2095–2112.

    Article  Google Scholar 

  • Björklund, J.A., Gunnarson, B.E., Krusic, P.J., Grudd, H., Josefsson, T., Östlund, L., Linderholm, H.W., 2013. Advances towards improved low-frequency tree-ring reconstructions, using an updated Pinus sylvestris L. MXD network from the Scandinavian Mountains. Theoretical and Applied Climatology, 113, 697–710.

    Article  Google Scholar 

  • Bollschweiler, M., Stoffel, M., Schneuwly, D. M., and Bourqui, K., 2008. Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree Physiology, 28, 255–263.

    Article  Google Scholar 

  • Box, G. E. P., and Jenkins, G. M., 1970. Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.

    Google Scholar 

  • Brendel, O., Iannetta, P. P. M., and Stewart, D., 2000. A rapid and simple method to isolate pure alpha-cellulose. Phytochemical Analysis, 11, 7–10.

    Article  Google Scholar 

  • Briffa, K. R., and Melvin, T. M., 2011. A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In Dendroclimatology. Dordrecht: Springer, pp. 113–145.

    Chapter  Google Scholar 

  • Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karlen, W., Zetterberg, P., and Eronen, M., 1992. Fennoscandian summers from AD 500: temperature changes on short and long timescales. Climate Dynamics, 7(3), 111–119.

    Article  Google Scholar 

  • Buckley, B. M., 2009. Dating, dendrochronology. In Encyclopedia of Paleoclimatology and Ancient Environments. Dordrecht: Springer, pp. 239–247.

    Chapter  Google Scholar 

  • Campelo, F., Nabais, C., Gutiérrez, E., Freitas, H., and García-González, I., 2010. Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width. Trees, 24, 463–470.

    Article  Google Scholar 

  • Cook, E. R., 1985. A Time-Series Analysis Approach to Tree-Ring Standardization. PhD dissertation, Tucson, The University of Arizona Press, 171 pp.

    Google Scholar 

  • Cook, E. R., 1987. The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin, 47, 37–59.

    Google Scholar 

  • Cook, E. R., and Kairiukstis, L. A. (eds.), 1990. Methods of Dendrochronology: Applications in the Environmental Science. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Cook, E. R., and Peters, K., 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin, 41, 45–53.

    Google Scholar 

  • Cook, E. R., and Peters, K., 1997. Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene, 7, 361–370.

    Article  Google Scholar 

  • Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A., and Funkhouser, G., 1995. The segment length curse in long tree-ring chronology development for paleoclimatic studies. The Holocene, 5, 229–237.

    Article  Google Scholar 

  • Coplen, T. B., 1995. Discontinuance of SMOW and PDB. Nature, 375, 285.

    Article  Google Scholar 

  • Deslauriers, A., and Morin, H., 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees, 19, 402–408.

    Article  Google Scholar 

  • Downing, D. J., and McLaughlin, S. B., 1990. Detecting shifts in radial growth by use of intervention detection. In Cook, E. R., and Kairiukstis, L. A. (eds.), Methods of Dendrochronology. Dordrecht: International Institute for Applied Systems Analysis, pp. 258–270.

    Google Scholar 

  • Druckenbrod, D. L., 2005. Dendroecological reconstructions of forest disturbance history using time-series analysis with intervention detection. Canadian Journal of Forest Research, 35, 868–876.

    Article  Google Scholar 

  • Druckenbrod, D. L., Pederson, N., Rentch, J., and Cook, E. R., 2013. A comparison of times series approaches for dendroecological reconstructions of past canopy disturbance events. Forest Ecology and Management, 302, 23–33.

    Article  Google Scholar 

  • Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., 1993. Stable Isotopes and Plant Carbon-Water Relations. San Diego: Academic. 555 pp.

    Google Scholar 

  • Esper, J., Frank, D. C., Battipaglia, G., Büntgen, U., Holert, C., Treydte, K., Siegwolf, R., and Saurer, M., 2010. Low-frequency noise in δ13C and δ18O tree ring data: a case study of Pinus uncinata in the Spanish Pyrenees. Global Biogeochemical Cycles, 24, GB4018.

    Article  Google Scholar 

  • Farquhar, G. D., and Richards, R. A., 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 11, 539–552.

    Article  Google Scholar 

  • Farquhar, G. D., O’Leary, M. H., and Berry, J. A., 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121–137.

    Article  Google Scholar 

  • Farquhar, G. D., Ehleringer, F. R., and Hubick, K. T., 1989. Carbon isotope discrimination and photosynthesis. Annual Review Plant Physiology and Plant Molecular Biology, 40, 503–537.

    Article  Google Scholar 

  • Feng, X., 1998. Long-term ci/ca response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies. Oecologia, 117, 19–25.

    Article  Google Scholar 

  • Feng, X., 1999. Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: a response to atmospheric CO2 concentration. Geochimica et Cosmochimica Acta, 63, 1891–1903.

    Article  Google Scholar 

  • Filion, L., and Cournoyer, L., 1995. Variation in wood structure of eastern larch defoliated by the larch sawfly in subarctic Quebec, Canada. Canadian Journal of Forest Research, 25, 1263–1268.

    Article  Google Scholar 

  • Fonti, P., and García-González, I., 2004. Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytologist, 163, 77–86.

    Article  Google Scholar 

  • Fonti, P., von Arx, G., García-González, I., Eilmann, B., Sass-Klaassen, U., Gärtner, H., and Eckstein, D., 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, 185, 42–53.

    Article  Google Scholar 

  • Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting, I. G., Leuenberger, M., Langenfels, R. L., Michel, E., and Steele, L. P., 1999. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus Series B Chemical and Physical Meteorology, 51, 170–193.

    Article  Google Scholar 

  • Fritts, H. C., 1976. Tree Rings and Climate. New York: Academic.

    Google Scholar 

  • Gagen, M., McCarroll, D., Loader, N. J., Robertson, I., Jalkanen, R., and Anchukaitis, K. J., 2007. Exorcising the ‘egment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. The Holocene, 17, 435–446.

    Article  Google Scholar 

  • Gagen, M., McCarroll, D., Loader, N. J., and Robertson, I., 2011. Stable Isotopes in dendroclimatology: moving beyond ‘Potential’. In Hughes, M. K., Swetnam, T. W., and Diaz, H. F. (eds.), Dendroclimatology. Dordrecht: Springer, pp. 147–172.

    Chapter  Google Scholar 

  • Graybill, D. A., 1982. Chronology development and analysis. In Hughes, M. K., Kelly, P. M., Pilcher, J. R., and LaMarche, V. C., Jr. (eds.), Climate from Tree Rings. Cambridge: Cambridge University Press, pp. 21–28.

    Google Scholar 

  • Griffin, D., Meko, D. M., Touchan, R., Leavitt, S. W., and Woodhouse, C. A., 2011. Latewood chronology development for summer-moisture reconstruction in the US Southwest. Tree-Ring Research, 67(2), 87–101.

    Article  Google Scholar 

  • Helama, S., Lindholm, M., Timonen, M., and Eronen, M., 2004. Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theoretical and Applied Climatology, 79, 239–254.

    Article  Google Scholar 

  • International Atomic Energy Agency (IAEA), 1995. TECDOC-825. Reference and intercomparison materials for stable isotopes of light elements . In Proceedings of a Consultants Meeting, Vienna, December 1–3, 1993.

    Google Scholar 

  • Knoller, K., Boettger, T., Weise, S. M., and Gehre, M., 2005. Carbon isotope analyses of cellulose using two different on-line techniques (elemental analysis and high-temperature pyrolysis) – a comparison. Rapid Communications in Mass Spectrometry, 19, 343–348.

    Article  Google Scholar 

  • LaMarche, V. C., and Hirschboeck, K. K., 1984. Frost rings in trees as records of major volcanic eruptions. Nature, 307(5947), 121–126.

    Article  Google Scholar 

  • Laumer, W., Andreu, L., Helle, G., Schleser, G. H., Wieloch, T., and Wissel, H., 2009. A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid Communications in Mass Spectrometry, 23, 1934–1940.

    Article  Google Scholar 

  • Leavitt, S. W., 2008. Tree-ring isotopic pooling without regard to mass: no difference from averaging δ13C values of each tree. Chemical Geology, 252, 52–55.

    Article  Google Scholar 

  • Leavitt, S. W., 2010. Tree-ring C–H–O isotope variability and sampling. Science of The Total Environment, 408, 5244–5253.

    Article  Google Scholar 

  • Leavitt, S. W., and Long, A., 1984. Sampling strategy for stable carbon isotope analyses of tree rings in pine. Nature, 311, 145–147.

    Article  Google Scholar 

  • Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R., and Waterhouse, J. S., 1997. An improved technique for the batch processing of small wholewood samples to α-cellulose. Chemical Geology, 136, 313–317.

    Article  Google Scholar 

  • Loader, N. J., Robertson, I., and McCarroll, D., 2003. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeography, Palaeoclimatology, Palaeoecology, 196, 395–407.

    Article  Google Scholar 

  • Mann, M. E., and Rutherford, S., 2002. Climate reconstruction using ‘pseudoproxies’. Geophysical Research Letters, 29, 1501, doi:10.1029/2001GL014554.

    Article  Google Scholar 

  • Marshall, R., 1927. The Growth of Hemlock Before and After Release from Suppression. Cambridge, MA: Harvard University Press. Harvard Forest Bulletin, Vol. 11.

    Google Scholar 

  • Martin-Benito, D., Beeckman, H., and Cañellas, I., 2013. Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest. European Journal of Forest Research, 132, 33–45.

    Article  Google Scholar 

  • McCarroll, D., and Loader, N. J., 2004. Stable isotopes in tree rings. Quaternary Research Reviews, 23, 771–801.

    Google Scholar 

  • McCarroll, D., and Pawellek, F., 2001. Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. The Holocene, 11, 517–526.

    Article  Google Scholar 

  • McCarroll, D., Gagen, M. H., Loader, N. J., Robertson, I., Anchukaitis, K. J., Los, S., Young, G. H. F., Jalkanen, R., Kirchhefer, A., and Waterhouse, J. S., 2009. Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochimica et Cosmochimica Acta, 73, 1539–1547.

    Article  Google Scholar 

  • Meko, D. M., and Baisan, C. H., 2001. Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region. International Journal of Climatology, 21(6), 697–708.

    Article  Google Scholar 

  • Melvin, T. M., 2004. Historical Growth Rates and Changing Climatic Sensitivity of Boreal Conifers. Dissertation, University of East Anglia.

    Google Scholar 

  • Melvin, T. M., and Briffa, K. R., 2008. A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia, 26(2), 71–86.

    Article  Google Scholar 

  • Oliver, C. D., and Larson, B. C., 1996. Forest Stand Dynamics. New York: Wiley.

    Google Scholar 

  • Peñuelas, J., Canadell, J. G., and Ogaya, R., 2010. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography, 20, 597–608.

    Article  Google Scholar 

  • Rinne, K. T., Boettger, T., Loader, N. J., Robertson, I., Switsur, V. R., and Waterhouse, J. S., 2005. On the purification of α-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chemical Geology, 222, 75–82.

    Article  Google Scholar 

  • Robertson, A., Overpeck, J., Rind, D., Mosley-Thompson, E., Zielinski, G., Lean, J., Koch, D., Penner, J., Tegen, I., and Healy, R., 2001. Hypothesized climate forcing time series for the last 500 years. Journal of Geophysical Research, 106, 14783–14803.

    Article  Google Scholar 

  • Robertson, I., Leavitt, S. W., Loader, N. J., and Buhay, W., 2008. Progress in isotope dendroclimatology. Chemical Geology, 252, EX1–EX4.

    Article  Google Scholar 

  • Saurer, M., Siegwolf, R. T. W., and Schweingruber, F. H., 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology, 10, 2109–2120.

    Article  Google Scholar 

  • Schweingruber, F. H., 2007. Wood Structure and Environment. Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Vysotskaya, L. G., and Vaganov, E. A., 1989. Components of the variability of radial cell size in tree rings of conifers. IAWA Bulletin, 10(4), 417–426.

    Article  Google Scholar 

  • Wang, L., Payette, S., and Bégin, Y., 2002. Relationships between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Quebec. Canadian Journal of Forest Research, 32, 477–486.

    Article  Google Scholar 

  • Waterhouse, J. S., Switsur, V. R., Barker, A. C., Carter, A. H. C., Hemming, D. L., Loader, N. J., and Robertson, I., 2004. Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. Quaternary Science Reviews, 23, 803–810.

    Article  Google Scholar 

  • Wieloch, T., Helle, G., Heinrich, I., Voigt, M., and Schyma, P., 2011. A novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples. Dendrochronologia, 29, 115–117.

    Article  Google Scholar 

  • Wimmer, R., 2002. Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia, 20, 21–36.

    Article  Google Scholar 

  • Woodcock, D. W., 1989. Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Canadian Journal of Forest Research, 19, 639–644.

    Article  Google Scholar 

  • Yasue, K., Funada, R., Kobayashi, O., and Ohtani, J., 2000. The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees, 14, 223–229.

    Article  Google Scholar 

  • Young, G. H. F., Demmler, J. C., Gunnarson, B. E., Kirchhefer, A. J., Loader, N. J., and McCarroll, D., 2011. Age trends in tree ring growth and isotopic archives: a case study of Pinus sylvestris L. from northwestern Norway. Global Biogeochemical Cycles, 25, GB2020.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Leland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Andreu-Hayles, L., Leland, C. (2014). Dendrochronology, Progress. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics