Skip to main content

Groundwater Dating with Atmospheric Halogenated Compounds

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Synonyms

CFC dating; Chlorofluorocarbon dating; SF6 dating

Definition

Atmospheric environmental releases refer to the emission of stable, long-lived compounds of solely anthropogenic origin into the atmosphere and the use of the compounds to estimate dates of their incorporation into groundwater.

Introduction

The majority of environmental anthropogenic tracers that can be used to date groundwater were released to the atmosphere after 1940 (Fig. 1). Groundwater dating relates the measured concentration of these trace atmospheric gases to the reconstructed history of the trace gas concentration in the atmosphere. Three general types of tracers can be used to date groundwater: (1) halogenated tracers, including the chlorofluorocarbons and hydrochlorofluorocarbons (CFCs and HCFCs), the perfluorocarbons and hydrofluorocarbons (PFCs and HFCs), sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), and nitrogen trifluoride (NF3) (IAEA 2006); (2) anthropogenic radiogenic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Aeschbach-Hertig, W., Peeters, F., Beyerle, U., and Kipfer, R., 1999. Interpretation of dissolved atmospheric noble gases in natural waters. Water Resources Research, 35(9), 2779–2792, doi:10.1029/1999wr900130.

    Google Scholar 

  • Aeschbach-Hertig, W., Peeters, F., Beyerle, U., and Kipfer, R., 2000. Palaeotemperature reconstruction from noble gases in groundwater taking into account equilibration with entrapped air. Nature, 405(6790), 1040–1044.

    Google Scholar 

  • AFEAS, 2013. Production, Sales, and Atmospheric Release of Fluorocarbons Through 2007: Alternative Fluorocarbons Environmental Acceptability Study (AFEAS) Administrative Organization. Accessed at April 21, 2014 at www.afeas.org.

  • AGAGE. 2013. Advanced Global Atmospheric Gases Experiment. Accessed on April 12, 2014 at http://agage.eas.gatech.edu/.

  • Ahlswede, J., Hebel, S., Kalinowski, M. B., and Ross, O., 2009. Update of the Global Krypton-85 Emission Inventory. Zentrum Für Naturwissenschaft und Friedensforschung der Universitat Hamburg Occasional Paper No. 9, 24 p., Accessed on April 12, 2014 at http://www.znf.uni-hamburg.de/OcPaper_No9.pdf.

  • Ahlswede, J., Hebel, S., Ross, J. O., Schoetter, R., and Kalinowski, M. B., 2013. Update and improvement of the global krypton-85 emission inventory. Journal of Environmental Radioactivity, 115, 34–42.

    Google Scholar 

  • Althaus, R., Klump, S., Onnis, A., Kipfer, R., Purtschert, R., Stauffer, F., and Kinzelbach, W., 2009. Noble gas tracers for characterisation of flow dynamics and origin of groundwater: a case study in Switzerland. Journal of Hydrology, 370(1–4), 64–72, doi:10.1016/j.jhydrol.2009.02.053.

    Google Scholar 

  • Balsiger, C., Holliger, C., and Höhener, P., 2005. Reductive dechlorination of chlorofluorocarbons and hydrochlorofluorocarbons in sewage sludge and aquifer sediment microcosms. Chemosphere, 61(3), 361–373, doi:10.1016/j.chemosphere.2005.02.087.

    Google Scholar 

  • Bauer, S., Fulda, C., and Schäfer, W., 2001. A multi-tracer study in a shallow aquifer using age dating tracers 3H, 85Kr, CFC-113 and SF6 – indication for retarded transport of CFC-113. Journal of Hydrology, 248(1–4), 14–34, doi:10.1016/S0022-1694(01)00381-X.

    Google Scholar 

  • Bentley, H. W., Phillips, F. M., Davis, S. N., Gifford, S., Elmore, D., Tubbs, L. E., and Gove, H. E., 1982. Thermonuclear 36Cl pulse in natural water. Nature, 300(5894), 737–740.

    Google Scholar 

  • Bentley, H. W., Phillips, F. M., Davis, S. N., Habermehl, M. A., Airey, P. L., Calf, G. E., Elmore, D., Gove, H. E., and Torgersen, T., 1986. Chlorine 36 dating of very old groundwater: 1. The Great Artesian Basin, Australia. Water Resources Research, 22(13), 1991–2001, doi:10.1029/WR022i013p01991.

    Google Scholar 

  • Bethke, C. M., and Johnson, T. M., 2008. Groundwater age and groundwater age dating. Annual Review of Earth and Planetary Sciences, 36(1), 121–152, doi:10.1146/annurev.earth.36.031207.124210.

    Google Scholar 

  • Böhlke, J. K., and Denver, J. M., 1995. Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resources Research, 31(9), 2319–2339, doi:10.1029/95wr01584.

    Google Scholar 

  • Böhlke, J. K., Révész, K., Busenberg, E., Deák, J., Deseö, É., and Stute, M., 1997. Groundwater record of Halocarbon transport by the Danube river. Environmental Science and Technology, 31(11), 3293–3299, doi:10.1021/es970336h.

    Google Scholar 

  • Bu, X., and Warner, M. J., 1995. Solubility of chlorofluorocarbon 113 in water and seawater. Deep Sea Research Part I: Oceanographic Research Papers, 42(7), 1151–1161, doi:10.1016/0967-0637(95)00052-8.

    Google Scholar 

  • Bullister, J. L., and Weiss, R. F., 1988. Determination of CCl3F and CCl2F2 in seawater and air. Deep Sea Research Part I: Oceanographic Research Papers, 35(5), 839–853, doi:10.1016/0198-0149(88)90033-7.

    Google Scholar 

  • Bullister, J. L., Wisegarver, D. P., and Menzia, F. A., 2002. The solubility of sulfur hexafluoride in water and seawater. Deep Sea Research Part I: Oceanographic Research Papers, 49(1), 175–187, doi:10.1016/S0967-0637(01)00051-6.

    Google Scholar 

  • Burton, W. C., Plummer, L. N., Busenberg, E., Lindsey, B. D., and Gburek, W. J., 2002. Influence of fracture anisotropy on groundwater ages and chemistry, Valley and Ridge province, Pennsylvania. Ground Water, 40(3), 242–257.

    Google Scholar 

  • Busenberg, E., and Plummer, L. N., 1992. Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: The alluvium and terrace system of central Oklahoma. Water Resources Research, 28(9), 2257–2283, doi:10.1029/92wr01263.

    Google Scholar 

  • Busenberg, E., and Plummer, L. N., 2000. Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resources Research, 36(10), 3011–3030, doi:10.1029/2000wr900151.

    Google Scholar 

  • Busenberg, E., and Plummer, L. N., 2008. Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfur hexafluoride (SF6), CF3Cl (CFC-13), and CF2Cl2 (CFC-12). Water Resources Research, 44(2), 18 p, doi:10.1029/2007wr006150.

    Google Scholar 

  • Busenberg, E., and Plummer, L. N., 2010. A rapid method for the measurement of sulfur hexafluoride (SF6), trifluoromethyl sulfur pentafluoride (SF5CF3), and Halon 1211 (CF2ClBr) in hydrologic tracer studies. Geochemistry, Geophysics, Geosystems, 11(11), Q11001, 10 p, doi:10.1029/2010gc003312.

    Google Scholar 

  • Caplow, T., Schlosser, P., Ho, D. T., and Santella, N., 2003. Transport dynamics in a sheltered estuary and connecting tidal straits: sf6 tracer study in New York Harbor. Environmental Science and Technology, 37(22), 5116–5126, doi:10.1021/es034198+.

    Google Scholar 

  • Collins, W. D., 1925. Temperature of water available for industrial use in the United States. U.S. Geological Survey Water-Supply Paper 530-F, 97–104.

    Google Scholar 

  • Cook, P. G., and Herczeg, A. L., 1999. Environmental Tracers in Subsurface Hydrology. Norwell: Kluwer Academic, 529 p., ISBN: 0-7923-7707-9.

    Google Scholar 

  • Cook, P. G., and Böhlke, J. K., 1999. Determining timescales for groundwater flow and solute transport. In Cook, P. G., and Herczeg, A. L. (eds.), Environmental Tracers in Subsurface Hydrology. Norwell: Kluwer Academic, 529 p., ISBN: 0-7923-7707-9.

    Google Scholar 

  • Cook, P. G., and Böhlke, J. K., 2000. Determining timescales for groundwater flow and solute transport. In Cook, P. G., and Herczeg, A. L. (eds.), Environmental Tracers in Subsurface Hydrology. Norwell: Kluwer, pp. 1–30.

    Google Scholar 

  • Cook, P. G., and Herczeg, A. L., 2000. Environmental Tracers in Subsurface Hydrology. Norwell: Kluwer, 529 p.

    Google Scholar 

  • Cook, P. G., and Solomon, D. K., 1997. Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He and 85Kr. Journal of Hydrology, 191(1–4), 245–265, doi:10.1016/s0022-1694(96)03051-x.

    Google Scholar 

  • Cook, P. G., Solomon, D. K., Plummer, L. N., Busenberg, E., and Schiff, S. L., 1995. Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resources Research, 31(3), 425–434, doi:10.1029/94wr02528.

    Google Scholar 

  • Cook, P. G., Love, A. J., Robinson, N. I., and Simmons, C. T., 2005. Groundwater ages in fractured rock aquifers. Journal of Hydrology, 308(1–4), 284–301, doi:10.1016/j.jhydrol.2004.11.005.

    Google Scholar 

  • Cook, P. G., Plummer, L. N., Solomon, D. K., Busenberg, E., and Han, L. E., 2006. Chapter 4 – Effects and processes that can modify apparent CFC age. In Gröning, M., Han, L. F., and Aggarwal, P. (eds.), Use of Chlorofluorcarbons in Hydrology: A Guidebook. Vienna: International Atomic Energy Agency, pp. 31–58.

    Google Scholar 

  • Darling, W. G., Gooddy, D. C., Morris, B. L., and MacDonald, A. M., 2010. Using CFCs and SF6 for groundwater dating: a SWOT analysis. In Birkle, P., and Torres-Alvarado, I. (eds.), Water-Rock Interaction XIII. Boca Raton: CRC Press, pp. 15–22.

    Google Scholar 

  • Deeds, D. A., 2008. The Natural Geochemistry of Tetrafluoromethane and Sulfur Hexafluoride: Studies of Ancient Mojave Desert Groundwaters, North Pacific Seawaters and the Summit Emissions of Kilauea Volcano. Dissertation, San Diego, Scripps Institution of Oceanography, 158 p.

    Google Scholar 

  • Deeds, D. A., Vollmer, M. K., Kulongoski, J. T., Miller, B. R., Mühle, J., Harth, C. M., Izbicki, J. A., Hilton, D. R., and Weiss, R. F., 2008. Evidence for crustal degassing of CF4 and SF6 in Mojave Desert groundwaters. Geochimica et Cosmochimica Acta, 72(4), 999–1013, doi:10.1016/j.gca.2007.11.027.

    Google Scholar 

  • Dunkle, S. A., Plummer, L. N., Busenberg, E., Phillips, P. J., Denver, J. M., Hamilton, P. A., Michel, R. L., and Coplen, T. B., 1993. Chlorofluorocarbons (CCl3F and CCl2F2) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic Coastal Plain, United States. Water Resources Research, 29(12), 3837–3860, doi:10.1029/93wr02073.

    Google Scholar 

  • Eberts, S., Böhlke, J., Kauffman, L., and Jurgens, B., 2012. Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeology Journal, 20(2), 263–282, doi:10.1007/s10040-011-0810-6.

    Google Scholar 

  • Ekwurzel, B., Schlosser, P., Smethie, W. M., Jr., Plummer, L. N., Busenberg, E., Michel, R. L., Weppernig, R., and Stute, M., 1994. Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resources Research, 30(6), 1693–1708, doi:10.1029/94wr00156.

    Google Scholar 

  • Engesgaard, P., Højberg, A. L., Hinsby, K., Jensen, K. H., Laier, T., Larsen, F., Busenberg, E., and Plummer, L. N., 2004. Transport and time lag of chlorofluorocarbon gases in the unsaturated zone, Rabis Creek, Denmark. Vadose Zone Journal, 3(4), 1249–1261, doi:10.2113/3.4.1249.

    Google Scholar 

  • Erboy, Y., and Smethie, W. M., Jr., 2012. Trifluoromethyl sulfur pentafluoride and its relationship to sulfur hexafluoride and chlorofluorocarbon-12 in the atmosphere near the New York City metropolitan area. Atmospheric Environment, 55, 135–138, doi:10.1016/j.atmosenv.2012.02.053.

    Google Scholar 

  • Etcheverry, D., and Perrochet, P., 2000. Direct simulation of groundwater transit-time distributions using the reservoir theory. Hydrogeology Journal, 8(2), 200–208, doi:10.1007/s100400050006.

    Google Scholar 

  • Fontes, J. C., 1982. Dating groundwater. In International Atomic Energy Agency (ed.), Guidebook on Nuclear Techniques in Hydrology. Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Galdiga, C. U., and Greibrokk, T., 1997. Simultaneous determination of trace amounts of sulphur hexafluoride and cyclic perfluorocarbons in reservoir samples by gas chromatography. Chromatographia, 46(7–8), 440–443, doi:10.1007/bf02490884.

    Google Scholar 

  • Garcia, R. R., Kinnison, D. E., and Marsh, D. R., 2012. “World avoided” simulations with the whole atmosphere community climate model. Journal of Geophysical Research, [Atmospheres], 117(D23303), 16 p, doi:10.1029/2012jd018430.

    Google Scholar 

  • Gardner, P., and Solomon, D. K., 2009. An advanced passive diffusion sampler for the determination of dissolved gas concentrations. Water Resources Research, 45(6), W06423, 12 p, doi:10.1029/2008wr007399.

    Google Scholar 

  • Giunta, C. J., 2006. Thomas Midgley, Jr., and the invention of Chlorofluorocarbon refrigerants: it ain’t necessarily so. Bulletin for the History of Chemistry, 31(2), 66–73.

    Google Scholar 

  • Gooddy, D. C., Darling, W. G., Abesser, C., and Lapworth, D. J., 2006. Using chlorofluorocarbons (CFCs) and sulphur hexafluoride (SF6) to characterise groundwater movement and residence time in a lowland Chalk catchment. Journal of Hydrology, 330(1–2), 44–52, doi:10.1016/j.jhydrol.2006.04.011.

    Google Scholar 

  • Goode, D. J., 1996. Direct simulation of groundwater age. Water Resources Research, 32(2), 289–296, doi:10.1029/95wr03401.

    Google Scholar 

  • Hall, B. D., Dutton, G. S., Mondeel, D. J., Nance, J. D., Rigby, M., Butler, J. H., Moore, F. L., Hurst, D. F., and Elkins, J. W., 2011. Improving measurements of SF6 for the study of atmospheric transport and emissions. Atmospheric Measurement Techniques, 4(11), 2441–2451, doi:10.5194/amt-4-2441-2011.

    Google Scholar 

  • Harnisch, J., Borchers, R., Fabian, P., Gaggeler, H. W., and Schotterer, U., 1996. Effect of natural tetrafluoromethane. Nature, 384(6604), 32–32.

    Google Scholar 

  • Harnisch, J., Frische, M., Borchers, R., Eisenhauer, A., and Jordan, A., 2000. Natural fluorinated organics in fluorite and rocks. Geophysical Research Letters, 27(13), 1883–1886, doi:10.1029/2000gl008488.

    Google Scholar 

  • HATS. 2013. Halocarbons & Other Atmospheric Trace Species Group (HATS). National Oceanic and Atmospheric Administration. Accessed on April 12, 2014 at http://www.esrl.noaa.gov/gmd/hats/.

  • Heaton, T. H. E., and Vogel, J. C., 1981. “Excess air” in groundwater. Journal of Hydrology, 50, 201–216, doi:10.1016/0022-1694(81)90070-6.

    Google Scholar 

  • Ho, D. T., Schlosser, P., Smethie, W. M., and Simpson, H. J., 1998. Variability in atmospheric chlorofluorocarbons (CCl3F and CCl2F2) near a large urban area: Implications for groundwater dating. Environmental Science and Technology, 32(16), 2377–2382, doi:10.1021/es980021h.

    Google Scholar 

  • Ho, D. T., Ledwell, J. R., and Smethie, W. M., Jr., 2008. Use of SF5CF3 for ocean tracer release experiments. Geophysical Research Letters, 35(4), L04602, 5 p, doi:10.1029/2007gl032799.

    Google Scholar 

  • Hofer, M., and Imboden, D. M., 1998. Simultaneous determination of CFC-11, CFC-12, N2, and Ar in water. Analytical Chemistry, 70(4), 724–729, doi:10.1021/ac970499o.

    Google Scholar 

  • Höhener, P., Werner, D., Balsiger, C., and Pasteris, G., 2003. Worldwide occurrence and fate of chlorofluorocarbons in groundwater. Critical Reviews in Environmental Science and Technology, 33(1), 1–29, doi:10.1080/10643380390814433.

    Google Scholar 

  • IAEA, 2006. Use of Chlorofluorcarbons in Hydrology: A Guidebook. Vienna: International Atomic Energy Agency.

    Google Scholar 

  • IAEA/WMO, 2006. Global Network of Isotopes in Precipitation. The GNIP database. International Atomic Energy Agency/World Meteorological Organization website Accessed April 12, 2014 at http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html.

  • IPCC. 2007. Climate Change 2007: Synthesis Report. In International Panel on Climate Change Fourth Assessment Report (AR4): IPCC. Accessed on April 22 2014 at: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm.

  • Ivy, D. J., Arnold, T., Harth, C. M., Steele, L. P., Mühle, J., Rigby, M., Salameh, P. K., Leist, M., Krummel, P. B., Fraser, P. J., Weiss, R. F., and Prinn, R. G., 2012. Atmospheric histories and growth trends of C4F10, C5F12, C6F14, C7F16 and C8F18. Atmospheric Chemistry and Physics, 12(9), 4313–4325, doi:10.5194/acp-12-4313-2012.

    Google Scholar 

  • Johnson, J. E., 1999. Evaluation of a seawater equilibrator for shipboard analysis of dissolved oceanic trace gases. Analytica Chimica Acta, 395(1–2), 119–132, doi:10.1016/S0003-2670(99)00361-X.

    Google Scholar 

  • Johnston, C. T., Cook, P. G., Frape, S. K., Plummer, L. N., Busenberg, E., and Blackportm, R. J., 1998. Groundwater age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone. Ground Water, 36(1), 171–180.

    Google Scholar 

  • Jurgens, B. C., Böhlke, J. K., and Eberts, S. M., 2012. TracerLPM (Version 1): An Excel(R) Workbook for Interpreting Groundwater Age Distributions from Environmental Tracer Data. U.S. Geological Survey Techniques and Methods Report, 4-F3, 60 p.

    Google Scholar 

  • Katz, B. G., Böhlke, J. K., and Hornsby, H. D., 2001. Timescales for nitrate contamination of spring waters, northern Florida, USA. Chemical Geology, 179(1–4), 167–186, doi:10.1016/s0009-2541(01)00321-7.

    Google Scholar 

  • Ko, M. K. W., Sze, N. D., Wang, W.-C., Shia, G., Goldman, A., Murcray, F. J., Murcray, D. G., and Rinsland, C. P., 1993. Atmospheric sulfur hexafluoride: Sources, sinks and greenhouse warming. Journal of Geophysical Research, [Atmospheres], 98(D6), 10499–10507, doi:10.1029/93jd00228.

    Google Scholar 

  • Levin, I., Naegler, T., Heinz, R., Osusko, D., Cuevas, E., Engel, A., Ilmberger, J., Langenfelds, R. L., Neininger, B., Rohden, C. V., Steele, L. P., Weller, R., Worthy, D. E., and Zimov, S. A., 2010. The global SF6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories. Atmospheric Chemistry and Physics, 10(6), 2655–2662, doi:10.5194/acp-10-2655-2010.

    Google Scholar 

  • Lindsey, B. D., Phillips, S. W., Donnelly, C. A., Speiran, G. K., Plummer, L. N., Böhlke, J. K., Focazio, M. J., Burton, W. C., and Busenberg, E., 2003. Residence times and nitrate transport in groundwater discharging to streams in the Chesapeake Bay Watershed. In U. S. Geological Survey Water-Resources Investigations Report 2003–4035. Reston: U.S. Geological Survey.

    Google Scholar 

  • Liu, J., Chen, Z., Wei, W., Zhang, Y., Li, Z., Liu, F., and Guo, H., 2013. Using chlorofluorocarbons (CFCs) and tritium (3H) to estimate groundwater age and flow velocity in Hohhot Basin, China. Hydrological Processes:n/a–n/a. doi:10.1002/hyp.9659.

    Google Scholar 

  • Loose, B., Stute, M., Alexander, P., and Smethie, W. M., 2009. Design and deployment of a portable membrane equilibrator for sampling aqueous dissolved gases. Water Resources Research, 45(4), W00D34, doi:10.1029/2008wr006969.

    Google Scholar 

  • Lovelock, J. E., 1958. A sensitive detector for gas chromatography. Journal of Chromatography A, 1, 35–46, doi:10.1016/S0021-9673(00)93398-3.

    Google Scholar 

  • Lovelock, J. E., 1974. The electron capture detector: theory and practice. Journal of Chromatography A, 99, 3–12, doi:10.1016/S0021-9673(00)90840-9.

    Google Scholar 

  • Lovley, D. R., and Woodward, J. C., 1992. Consumption of Freons CFC-11 and CFC-12 by anaerobic sediments and soils. Environmental Science and Technology, 26(5), 925–929, doi:10.1021/es00029a009.

    Google Scholar 

  • Maiss, M., and Brenninkmeijer, C. A. M., 1998. Atmospheric SF6: trends, sources, and prospects. Environmental Science and Technology, 32(20), 3077–3086, doi:10.1021/es9802807.

    Google Scholar 

  • Maiss, M., Steele, L. P., Francey, R. J., Fraser, P. J., Langenfelds, R. L., Trivett, N. B. A., and Levin, I., 1996. Sulfur hexafluoride – a powerful new atmospheric tracer. Atmospheric Environment, 30(10–11), 1621–1629, doi:10.1016/1352-2310(95)00425-4.

    Google Scholar 

  • Manning, A. H., Clark, J. F., Diaz, S. H., Rademacher, L. K., Earman, S., and Niel Plummer, L., 2012. Evolution of groundwater age in a mountain watershed over a period of thirteen years. Journal of Hydrology, 460–461, 13–28, doi:10.1016/j.jhydrol.2012.06.030.

    Google Scholar 

  • McCarthy, R. L., Bower, F. A., and Jesson, J. P., 1977. The fluorocarbon-ozone theory – I. Production and release – world production and release of CCl3F and CCl2F2 (fluorocarbons 11 and 12) through 1975. Atmospheric Environment (1967), 11(6), 491–497, doi:10.1016/0004-6981(77)90065-8.

    Google Scholar 

  • McMahon, P., Plummer, L., Böhlke, J., Shapiro, S., and Hinkle, S., 2011. A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeology Journal, 1–22, doi:10.1007/s10040-011-0722-5.

    Google Scholar 

  • Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R., Muhle, J., and Simmonds, P. G., 2008. Medusa: a sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Analytical Chemistry, 80(5), 1536–1545, doi:10.1021/ac702084k.

    Google Scholar 

  • Montzka, S. A., and Reimann, S., 2010. Ozone-depleting substances (ODSs) and related chemicals. In Ajavon, A.-L. N., Newman, P. A., Pyle, J. A., and Ravishankara, A. R. (eds.), Scientific Assessment of Ozone Depletion: 2010. Geneva: World Meteorological Organization.

    Google Scholar 

  • Montzka, S. A., Dlugokencky, E. J., and Butler, J. H., 2011. Non-CO2 greenhouse gases and climate change. Nature, 476(7358), 43–50.

    Google Scholar 

  • Mühle, J., Ganesan, A. L., Miller, B. R., Salameh, P. K., Harth, C. M., Greally, B. R., Rigby, M., Porter, L. W., Steele, L. P., Trudinger, C. M., Krummel, P. B., O’Doherty, S., Fraser, P. J., Simmonds, P. G., Prinn, R. G., and Weiss, R. F., 2010. Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmospheric Chemistry and Physics, 10(11), 5145–5164, doi:10.5194/acp-10-5145-2010.

    Google Scholar 

  • Nelms, D. L., Harlow, G. E., Plummer, L. N., and Busenberg, E., 2003. Aquifer susceptibility in Virginia, 1998–2000. In U. S. Geological Survey Water-Resources Investigations Report 03–4278. Reston: U.S. Geological Survey.

    Google Scholar 

  • Newman, B. D., Osenbrück, K., Aeschbach-Hertig, W., Kip Solomon, D., Cook, P., Różański, K., and Kipfer, R., 2010. Dating of ‘young’ groundwaters using environmental tracers: advantages, applications, and research needs. Isotopes in Environmental and Health Studies, 46(3), 259–278, doi:10.1080/10256016.2010.514339.

    Google Scholar 

  • Nydal, R., and Lövseth, K., 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research: Oceans, 88(C6), 3621–3642, doi:10.1029/JC088iC06p03621.

    Google Scholar 

  • Ohta, T., Mahara, Y., Momoshima, N., Inoue, F., Shimada, J., Ikawa, R., and Taniguchi, M., 2009. Separation of dissolved Kr from a water sample by means of a hollow fiber membrane. Journal of Hydrology, 376(1–2), 152–158, doi:10.1016/j.jhydrol.2009.07.022.

    Google Scholar 

  • Oster, H., Sonntag, C., and Münnich, K. O., 1996. Groundwater age dating with chlorofluorocarbons. Water Resources Research, 32(10), 2989–3001, doi:10.1029/96wr01775.

    Google Scholar 

  • Plummer, L. N., 2005. Dating of young groundwater. In Aggarwal, P. K., Gat, J. R., and Froehlich, K. F. O. (eds.), Isotopes in the Water Cycle: Past, Present and Future of a Developing Science. Dordrecht: Springer, pp. 193–220.

    Google Scholar 

  • Plummer, L. N., and Friedman, L. C., 1999. Tracing and dating young groundwater. USGS Fact Sheet 134–99. U.S. Geological Survey, Reston VA. Accessed on April 22, 2014: http://pubs.usgs.gov/fs/FS-134-99/pdf/fs-134-99.pdf.

  • Plummer, L. N., Michel, R. L., Thurman, E. M., and Glynn, P. D., 1993. Environmental tracers for age dating young groundwater. In Alley, W. (ed.), Regional Ground-Water Quality. New York: Van Nostrand Reinhold, pp. 255–294.

    Google Scholar 

  • Plummer, L. N., Rupert, M. G., Busenberg, E., and Schlosser, P., 2000. Age of irrigation water in groundwater from the Eastern Snake River Plain Aquifer, south-central Idaho. Ground Water, 28(2), 20.

    Google Scholar 

  • Plummer, L. N., Busenberg, E., Eberts, S. M., Bexfield, L. M., Brown, C. J., Fahlquist, L. S., Katz, B. G., and Landon, M. K., 2008. Low-level detections of halogenated volatile organic compounds in groundwater: use in vulnerability assessments. Journal of Hydrologic Engineering, 13(11), 1049–1068, doi:10.1061/(asce)1084-0699(2008)13:11(1049).

    Google Scholar 

  • Prather, M. J., and Hsu, J., 2008. NF3, the greenhouse gas missing from Kyoto. Geophysical Research Letters, 35(12), L12810, doi:10.1029/2008gl034542.

    Google Scholar 

  • Preston, S. P., 2003. Sulfur hexafluoride, MIT, and the atomic bomb. Chemical Heritage, 2(2), 30–36.

    Google Scholar 

  • Probst, P.C., Yokochi, R., Sturchio, N. C., 2007. Method for extraction of dissolved gases from groundwater for radiokrypton analysis. In Lippmann-Pipke, J., and Aeschbach-Hertig, W. (eds.), Proceedings of the 4th Mini Conference on Noble Gases in the Hydrosphere and in Natural Gas Reservoirs, GERMANY: GFZ Potsdam.

    Google Scholar 

  • Reilly, T. E., Plummer, L. N., Phillips, P. J., and Busenberg, E., 1994. The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resources Research, 30(2), 421–433, doi:10.1029/93wr02655.

    Google Scholar 

  • Roberts, R. A., and Ramsey, P. J., 2013. Evaluation of fluorocarbon emissions from the aluminum smelting process. In Essential Readings in Light Metals. Hoboken: Wiley, pp. 1007–1014.

    Google Scholar 

  • Santoro, M. A., 2000. Clarifying the SF5CF3 record. Science, 290(5493), 935–936, doi:10.1126/science.290.5493.935.

    Google Scholar 

  • Schauffler, S. M., Heidt, L. E., Pollock, W. H., Gilpin, T. M., Vedder, J. F., Solomon, S., Lueb, R. A., and Atlas, E. L., 1993. Measurements of halogenated organic compounds near the tropical tropopause. Geophysical Research Letters, 20(22), 2567–2570, doi:10.1029/93gl02840.

    Google Scholar 

  • Sebol, L. A., Robertson, W. D., Busenberg, E., Plummer, L. N., Ryan, M. C., and Schiff, S. L., 2007. Evidence of CFC degradation in groundwater under pyrite-oxidizing conditions. Journal of Hydrology, 347(1–2), 1–12, doi:10.1016/j.jhydrol.2007.08.009.

    Google Scholar 

  • Seinfeld, J. H., and Pandis, S. N., 1998. The atmosphere. In Atmospheric Chemistry and Physics. New York: Wiley, pp. 1–47.

    Google Scholar 

  • Shapiro, S. D., Busenberg, E., Focazio, M. J., and Plummer, L. N., 2004. Historical trends in occurrence and atmospheric inputs of halogenated volatile organic compounds in untreated groundwater used as a source of drinking water. Science of the Total Environment, 321(1–3), 201–217, doi:10.1016/j.scitotenv.2003.09.007.

    Google Scholar 

  • Simmonds, P. G., Greally, B. R., Olivier, S., Nickless, G., Cooke, K. M., and Dietz, R. N., 2002. The background atmospheric concentrations of cyclic perfluorocarbon tracers determined by negative ion-chemical ionization mass spectrometry. Atmospheric Environment, 36(13), 2147–2156, doi:10.1016/S1352-2310(02)00194-2.

    Google Scholar 

  • Smith, M. J., Ho, D. T., Law, C. S., McGregor, J., Popinet, S., and Schlosser, P., 2011. Uncertainties in gas exchange parameterization during the SAGE dual-tracer experiment. Deep Sea Research Part II: Topical Studies in Oceanography, 58(6), 869–881, doi:10.1016/j.dsr2.2010.10.025.

    Google Scholar 

  • Solomon, D. K., Hunt, A., and Poreda, R. J., 1996. Source of radiogenic helium 4 in shallow aquifers: implications for dating young groundwater. Water Resources Research, 32(6), 1805–1813, doi:10.1029/96wr00600.

    Google Scholar 

  • Sousa, S. R., and Bialkowski, S. E., 1997. Temperature-dependent electron capture detector response to common alternative fluorocarbons. Analytical Chemistry, 69(19), 3871–3878, doi:10.1021/ac9703921.

    Google Scholar 

  • Straume, A. G., Dietz, R. N., Koff, E. N. D., and Nodop, K., 1998. Perfluorocarbon background concentrations in Europe. Atmospheric Environment, 32(24), 4109–4122, doi:10.1016/S1352-2310(98)00193-9.

    Google Scholar 

  • Sturges, W. T., Wallington, T. J., Hurley, M. D., Shine, K. P., Sihra, K., Engel, A., Oram, D. E., Penkett, S. A., Mulvaney, R., and Brenninkmeijer, C. A. M., 2000. A potent greenhouse gas identified in the atmosphere: SF5CF3. Science, 289(5479), 611–613, doi:10.1126/science.289.5479.611.

    Google Scholar 

  • Sturges, W. T., Oram, D. E., Laube, J. C., Reeves, C. E., Newland, M. J., Hogan, C., Martinerie, P., Witrant, E., Brenninkmeijer, C. A. M., Schuck, T. J., and Fraser, P. J., 2012. Emissions halted of the potent greenhouse gas SF5CF3. Atmospheric Chemistry and Physics, 12(8), 3653–3658, doi:10.5194/acp-12-3653-2012.

    Google Scholar 

  • Stute, M., and Schlosser, P., 1993. Principles and applications of the noble gas paleothermometer. In Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S. (eds.), Climate Change in Continental Isotopic Records, Vol. 374. Geophys. Monogr. Ser. Washington, DC: AGU.

    Google Scholar 

  • Stute, M., Clark, J. F., Schlosser, P., Broecker, W. S., and Bonani, G., 1995. A 30,000 year continental paleotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico. Quaternary Research, 43(2), 209–220, doi:10.1006/qres.1995.1021.

    Google Scholar 

  • Sun, T., Hall, C. M., and Castro, M. C., 2010. Statistical properties of groundwater noble gas paleoclimate models: Are they robust and unbiased estimators? Geochemistry, Geophysics, Geosystems, 11(2), Q02002, doi:10.1029/2009gc002717.

    Google Scholar 

  • Szabo, Z., Rice, D. E., Plummer, L. N., Busenberg, E., Drenkard, S., and Schlosser, P., 1996. Age dating of shallow groundwater with Chlorofluorocarbons, Tritium/Helium: 3, and flow path analysis, Southern New Jersey Coastal Plain. Water Resources Research, 32(4), 1023–1038, doi:10.1029/96wr00068.

    Google Scholar 

  • Thompson, G. M., and Hayes, J. M., 1979. Trichlorofluoromethane in groundwater – a possible tracer and indicator of groundwater age. Water Resources Research, 15(3), 546–554, doi:10.1029/WR015i003p00546.

    Google Scholar 

  • Turnbull, J. C., Lehman, S. J., Miller, J. B., Sparks, R. J., Southon, J. R., and Tans, P. P., 2007. A new high precision 14CO2 time series for North American continental air. Journal of Geophysical Research, [Atmospheres], 112(D11), D11310, doi:10.1029/2006jd008184.

    Google Scholar 

  • von Rohden, C., Kreuzer, A., Chen, Z., and Aeschbach-Hertig, W., 2010a. Accumulation of natural SF6 in the sedimentary aquifers of the North China Plain as a restriction on groundwater dating. Isotopes in Environmental and Health Studies, 46(3), 279–290, doi:10.1080/10256016.2010.494771.

    Google Scholar 

  • von Rohden, C., Kreuzer, A., Chen, Z., Kipfer, R., and Aeschbach-Hertig, W., 2010b. Characterizing the recharge regime of the strongly exploited aquifers of the North China Plain by environmental tracers. Water Resources Research, 46(5), W05511, doi:10.1029/2008wr007660.

    Google Scholar 

  • Warner, M. J., and Weiss, R. F., 1985. Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep Sea Research Part A: Oceanographic Research Papers, 32(12), 1485–1497, doi:10.1016/0198-0149(85)90099-8.

    Google Scholar 

  • Watson, T. B., Wilke, R., Dietz, R. N., Heiser, J., and Kalb, P., 2007. The atmospheric background of perfluorocarbon compounds used as tracers. Environmental Science and Technology, 41(20), 6909–6913, doi:10.1021/es070940k.

    Google Scholar 

  • Weiss, R. F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research and Oceanographic Abstracts, 17(4), 721–735, doi:10.1016/0011-7471(70)90037-9.

    Google Scholar 

  • Weiss, R. F., and Price, B. A., 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry, 8(4), 347–359, doi:10.1016/0304-4203(80)90024-9.

    Google Scholar 

  • Weiss, R. F., Mühle, J., Salameh, P. K., and Harth, C. M., 2008. Nitrogen trifluoride in the global atmosphere. Geophysical Research Letters, 35(20), L20821, doi:10.1029/2008gl035913.

    Google Scholar 

  • Weissmann, G. S., Zhang, Y., LaBolle, E. M., and Fogg, G. E., 2002. Dispersion of groundwater age in an alluvial aquifer system. Water Resources Research, 38(10), 1198, doi:10.1029/2001wr000907.

    Google Scholar 

  • Wilson, R. D., and Mackay, D. M., 1996. SF6 as a conservative tracer in saturated media with high intragranular porosity or high organic carbon content. Ground Water, 34(2), 241–249.

    Google Scholar 

  • Winger, K., Feichter, J., Kalinowski, M. B., Sartorius, H., and Schlosser, C., 2005. A new compilation of the atmospheric 85-krypton inventories from 1945 to 2000 and its evaluation in a global transport model. Journal of Environmental Radioactivity, 80(2), 183–215, doi:10.1016/j.jenvrad.2004.09.005.

    Google Scholar 

  • WMO, 2010. Scientific assessment of ozone depletion: 2010. In Ajavon, A.-L. N., Newman, P. A., Pyle, J. A., and Ravishankara, A. R. (eds.), Scientific Assessment of Ozone Depletion: 2010. Geneva: World Meteorological Organization.

    Google Scholar 

  • Worton, D. R., Sturges, W. T., Gohar, L. K., Shine, K. P., Martinerie, P., Oram, D. E., Humphrey, S. P., Begley, P., Gunn, L., Barnola, J.-M., Schwander, J., and Mulvaney, R., 2007. Atmospheric trends and radiative forcings of CF4 and C2F6 inferred from Firn air. Environmental Science and Technology, 41(7), 2184–2189, doi:10.1021/es061710t.

    Google Scholar 

  • Zuber, A., 1986. Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In Fritz, P., and Fontes, J.-C. (eds.), Handbook of Environmental Isotope Geochemistry. Amsterdam: Elsevier, pp. 1–59.

    Google Scholar 

  • Zuber, A., and Rosanski, K., 2007. Groundwater dating with the aid of tracers: strategies, pitfalls, and open problems. In: Lippmann-Pipke, J., and Aeschbach-Hertig, W. (eds.) The 4th Mini Conference on Noble Gases in the Hydrosphere and in Natural Gas Reservoirs. GERMANY: GFZ Potsdam.

    Google Scholar 

  • Zuber, A., Weise, S. M., Osenbrück, K., Grabczak, J., and Ciȩżkowski, W., 1995. Age and recharge area of thermal waters in La̧dek Spa (Sudeten, Poland) deduced from environmental isotope and noble gas data. Journal of Hydrology, 167(1–4), 327–349, doi:10.1016/0022-1694(94)02587-2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl B. Haase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science Business Media Dordrecht (outside the USA)

About this entry

Cite this entry

Haase, K.B., Busenberg, E. (2014). Groundwater Dating with Atmospheric Halogenated Compounds. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_257-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_257-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics