Skip to main content

Peat (14C)

  • Reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 131 Accesses

Definition

Peat. A highly organic soil that results when waterlogged anaerobic conditions suppress the degradation of vegetation.

Radiocarbon dating of peat. Measurement of the radiocarbon content in samples of either bulk peat or carbon-bearing fractions isolated from bulk peat by physical and/or chemical treatments. The objective is usually either to provide an absolute chronology for environmental or archaeological records contained within a peat deposit or to understand the biogeochemical cycling of carbon within the peat system.

Introduction

Peat is a highly organic deposit (e.g., 50–95 % organic matter on a dry mass basis), comprising a thin, more rapidly cycling “acrotelm” layer, overlying a thick, saturated “catotelm” layer, in which vegetation decay is very slow (Ingram, 1978; Clymo, 1984). Peat develops as a result of waterlogged anaerobic and acidic conditions that inhibit vegetation decomposition (c.f. Yavitt and Lang, 1990; Johnson and Damman, 1991; Valentine et al., 1994;...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Barber, K. E., Chambers, F. M., and Maddy, D., 2003. Holocene palaeoclimates from peat stratigraphy: macrofossil proxy climate records from three oceanic raised bogs in England and Ireland. Quaternary Science Reviews, 22, 521–539.

    Article  Google Scholar 

  • Billett, M. H., Garnett, M. H., and Harvey, F., 2007. UK peatland streams release old carbon to the atmosphere and young dissolved organic carbon to rivers. Geophysical Research Letters, 34(L23401), 2007, doi:10.1029/2007GL031797.

    Google Scholar 

  • Blaauw, M., and Christen, J. A., 2005. Radiocarbon peat chronologies and environmental change. Applied Statistics, 54, 805–816.

    Google Scholar 

  • Blaauw, M., van der Plicht, J., and van Geel, B., 2004a. Radiocarbon dating of bulk peat samples from raised bogs: non-existence of a previously reported ‘reservoir effect’? Quaternary Science Reviews, 23, 1537–1542.

    Article  Google Scholar 

  • Blaauw, M., van Geel, B., Mauquoy, D., and van der Plicht, J., 2004b. Carbon–14 wiggle-match dating of peat deposits: advantages and limitations. Journal of Quaternary Science, 19, 177–181.

    Article  Google Scholar 

  • Blaauw, M., Bakker, R., Christen, J. A., Hall, V. A., and van der Plicht, J., 2007. A Bayesian framework for age modeling of radiocarbon-dated peat deposits: case studies from the Netherlands. Radiocarbon, 49, 357–367.

    Google Scholar 

  • Bridgham, S. D., Updegraff, K., and Pastor, J., 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology, 79, 1545–1561.

    Article  Google Scholar 

  • Brock, F., Higham, T., Ditchfield, P., and Bronk Ramsey, C., 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon, 52, 103–112.

    Google Scholar 

  • Brock, F., Lee, S., Housley, R. A., and Bronk Ramsey, C., 2011. Variation in the radiocarbon age of different fractions of peat: a case study from Ahrenshöft, northern Germany. Quaternary Geochronology, 6, 550–555.

    Article  Google Scholar 

  • Bronk Ramsey, C., 2008. Deposition models for chronological records. Quaternary Science Reviews, 27, 42–60.

    Article  Google Scholar 

  • Clymo, R. S., 1984. The limits to peat bog growth. Philosophical Transactions of the Royal Society of London B, 303, 605–654.

    Article  Google Scholar 

  • Clymo, R. S., Oldfield, F., Appleby, P. G., Pearson, G. W., Ratnesar, P., and Richardson, N., 1990. The record of atmospheric deposition on a rainwater-dependent peatland. Philosophical Transactions of the Royal Society of London B, 327, 331–338.

    Article  Google Scholar 

  • Coles, B., and Coles, J., 1986. Sweet Track to Glastonbury, the Somerset Levels in Prehistory. London: Thames & Hudson.

    Google Scholar 

  • Cook, G. T., Dugmore, A. J., and Shore, J. S., 1998. The influence of pretreatment on humic acid yield and 14C age of Carex peat. Radiocarbon, 40, 21–27.

    Google Scholar 

  • Coronato, A., Roig, C., Collado, L., and Roig, F., 2006. Geomorphological emplacement and vegetational characteristics of Fuegian peatlands, southernmost Argentina, South America. In Martini, P., Martínez Cortízas, A., and Chesworth, W. (eds.), Peatlands: Evolution and Records of Environmental and Climate Changes. Amsterdam: Elsevier. Developments in Earth Surface Processes Series, pp. 111–129, Chapter 9.

    Chapter  Google Scholar 

  • Damon, P. E., Burr, G., Peristykh, A. N., Jacoby, G. C., and D’Arrigo, R. D., 1996. Regional radiocarbon effect due to thawing of frozen earth. Radiocarbon, 38, 597–602.

    Google Scholar 

  • Dugmore, A. J., Newton, A. J., Larsen, G., and Cook, G. T., 2000. Tephrochronology, environmental change and the Norse settlement of Iceland. Environmental Archaeology, 5, 21–34.

    Article  Google Scholar 

  • Edwards, K. J., 1979. Palynological and temporal inference in the context of prehistory, with special reference to the evidence from lake and peat deposits. Journal of Archaeological Science, 6, 255–270.

    Article  Google Scholar 

  • Edwards, K. J., and Rowntree, K. M., 1980. Radiocarbon and palaeoenvironmental evidence for changing rates of erosion at a Flandrian stage site in Scotland. In Cullingford, R. A., Davidson, D. A., and Lewin, J. (eds.), Timescales in Geomorphology. Chichester: Wiley, pp. 207–223.

    Google Scholar 

  • Garnett, M. H., Hardie, S. L., and Murray, C., 2011. Radiocarbon and stable carbon analysis of dissolved methane and carbon dioxide from the profile of a raised peat bog. Radiocarbon, 53, 71–80.

    Google Scholar 

  • Geyh, M. A., Krumbein, W. E., and Kudrass, H. R., 1974. Unreliable 14C dating of long-stored deep-sea sediments due to bacterial activity. Marine Geology, 17, 45–50.

    Article  Google Scholar 

  • Goodsite, M. E., Rom, W., Heinemeier, J., Lange, T., Ooi, S., Appleby, P. G., Shotyk, W., van der Knaap, W. O., Lohse, C., and Hansen, T. S., 2001. High resolution AMS 14C dating of post-bomb peat archives of atmospheric pollutants. Radiocarbon, 43, 495–515.

    Google Scholar 

  • Gorham, E., 1991. Northern peatlands: role in the carbon cycle and probable responses to global warming. Ecological Applications, 1, 182–195.

    Article  Google Scholar 

  • Hammond, A. P., Goh, K. M., Tonkin, P. J., and Manning, M. R., 1991. Chemical pretreatments for improving the radiocarbon-dates of peats and organic silts in a gley podzol environment – Grahams Terrace, North Westland. New Zealand Journal of Geology and Geophysics, 34, 191–194.

    Article  Google Scholar 

  • Harkness, G. T., Miller, B. F., Scott, E. M., and Baxter, M. S., 1989. Design and preparation of sample for the International Collaborative Study. Radiocarbon, 31, 407–413.

    Google Scholar 

  • Hatté, C., Morvan, J., Noury, C., and Paterne, M., 2001. Is classical acid–alkali–acid treatment responsible for contamination/an alternative proposition. Radiocarbon, 43, 177–182.

    Google Scholar 

  • Hope, D., Billett, M. F., and Cresser, M. S., 1994. A review of the export of carbon in river water: fluxes and processes. Environmental Pollution, 84, 301–324.

    Article  Google Scholar 

  • Ingram, H. A. P., 1978. Soil layers in mires: function and terminology. Journal of Soil Science, 29, 224–227.

    Article  Google Scholar 

  • Johnson, L. C., and Damman, A. W. H., 1991. Species-controlled Sphagnum decay on a South Swedish raised bog. Oikos, 61, 234–242.

    Article  Google Scholar 

  • Kilian, M. R., van der Plicht, J., and van Geel, B., 1995. Dating raised bogs: new aspects of 14C AMS wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews, 14, 959–966.

    Article  Google Scholar 

  • Le Roux, G., and Marshall, W. A., 2011. Constructing recent peat accumulation chronologies using atmospheric fall-out radionuclides. Mires and Peat, 7, 1–14.

    Google Scholar 

  • Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H., and Schaepman-Strub, G., 2008. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences, 5, 1475–1491.

    Article  Google Scholar 

  • Loisel, J., and Garneau, M., 2010. Late Holocene palaeoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: potential and limits of multi-proxy archives. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 493–533.

    Google Scholar 

  • MacDonald, G. M., Beukens, R. P., Kieser, W. E., and Vitt, D. H., 1987. Comparative radiocarbon dating terrestrial plant macrofossils and aquatic moss from the “ice-free corridor” of western Canada. Geology, 15, 837–840.

    Article  Google Scholar 

  • Malmer, N., and Wallén, B., 2004. Input rates, decay losses and accumulation rates of carbon in bogs during the last millenium: internal processes and environmental changes. The Holocene, 14, 111–117.

    Google Scholar 

  • Maltby, E., and Proctor, M. C. F., 1996. Peatlands: their nature and role in the biosphere. In Lappalainen, E. (ed.), Global Peat Resources. Jyväskylä: Kukkalantie. International Peat Society, pp. 11–19.

    Google Scholar 

  • Mauquoy, D., Yeloff, D., Van Geel, B., Charman, D., and Blundell, A., 2008. Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid-late Holocene. Journal of Quaternary Science, 23, 745–763.

    Article  Google Scholar 

  • Moore, T. R., Roulet, N. T., and Waddington, J. M., 1998. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change, 40, 229–245.

    Article  Google Scholar 

  • Nilsson, M., Klarqvist, M., Bohlin, E., and Possnert, G., 2001. Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS. The Holocene, 11, 579–586.

    Article  Google Scholar 

  • Ohlson, M., Korbøl, A., and Økland, R. H., 2006. The macroscopic charcoal record in forested boreal peatlands in southeast Norway. The Holocene, 16, 731–741.

    Article  Google Scholar 

  • Oldfield, F., Thompson, R., Crooks, P. R. J., Gedye, S. J., Hall, Valerie A., Harkness, D. D., Housley, R. A., McCormac, F. G., Newton, A. J., Pilcher, J. R., Renberg, I., and Richardson, N., 1997. Radiocarbon dating of a recent high-latitude peat profile: Stor Åmyrân, northern Sweden. The Holocene, 7, 283-290.

    Google Scholar 

  • Rabassa, J., Coronato, A., and Roig, C., 1996. The peat-bogs of Tierra del Fuego, Argentina. In Lappalainen, E. (ed.), Global Peat Resources. Jyskä: International Peat Society, pp. 261–266.

    Google Scholar 

  • Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. E., Hughen, K. A., Kromer, B., McCormac, G., Reimer, R. W., Manning, S., Bronk Ramsey, C., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., and Weyhenmeyer, C. E., 2004. INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46, 1029–1058.

    Google Scholar 

  • Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 1869–1887.

    Google Scholar 

  • Saarinen, T., 1996. Biomass and production of two vascular plants in a boreal mesotrophic fen. Canadian Journal of Botany, 74, 934–938.

    Article  Google Scholar 

  • Shore, J. S., Bartley, D. D., and Harkness, D. D., 1995. Problems encountered with the 14C dating of peat. Quaternary Science Reviews, 14, 373–383.

    Article  Google Scholar 

  • Shotton, F. W., 1972. An example of hard-water error in radiocarbon dating of vegetable matter. Nature, 240, 460–461.

    Article  Google Scholar 

  • Shotyk, W., 1996. Peat bog archives of atmospheric metal depositional: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environmental Reviews, 4, 149–183.

    Article  Google Scholar 

  • Stead, I. M., Bourke, J., and Brothwell, D. R., 1986. Lindow Man. The Body in the Bog. London: British Museum.

    Google Scholar 

  • Stout, J. D., Goh, K. M., and Rafter, T. A., 1981. Chemistry and turnover of naturally occurring resistant organic compounds in soil. In Paul, E. A., and Ladd, J. N. (eds.), Soil Biochemistry. New York: Marcel-Dekker, Vol. 5, pp. 1–73.

    Google Scholar 

  • Tipping, E., et al., 2010. Sources and ages of dissolved organic matter in peatland streams: evidence from chemistry mixture modelling and radiocarbon data. Biogeochemistry, 100, 121–137.

    Article  Google Scholar 

  • Turetsky, M. R., Manning, S. W., and Wieder, R. K., 2004. Dating recent peat deposits. Wetlands, 24, 324–356.

    Article  Google Scholar 

  • Turunen, J., Tomppo, E., Tolonen, K., and Reinikainen, A., 2002. Estimating carbon accumulation rates of undrained mires in Finland: application to boreal and subarctic regions. The Holocene, 12, 69–80.

    Article  Google Scholar 

  • Valentine, D. W., Holland, E. A., and Schimel, D. S., 1994. Ecosystem and physiological controls over methane production in northern wetlands. Journal of Geophysical Research, 99, 1563–1571.

    Article  Google Scholar 

  • Wang, Z. P., Duan, Y., Yang, J. R., Li, L. H., and Han, X. G., 2004. Plateau marsh methane oxidation as affected by inorganic N. Pedosphere, 14, 195–204.

    Google Scholar 

  • Yavitt, J. B., and Lang, G. E., 1990. Methane production in contrasting wetland sites: response to organo-chemical components of peat and to sulfate reduction. Geomicrobiology Journal, 8, 27–46.

    Article  Google Scholar 

  • Zoltai, S. C., and Martikainen, P. J., 1996. The role of forested peatlands in the global carbon cycle. NATO ASI Series I, 40, 47–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippa Ascough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ascough, P. (2015). Peat (14C). In: Jack Rink, W., Thompson, J.W. (eds) Encyclopedia of Scientific Dating Methods. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6304-3_166

Download citation

Publish with us

Policies and ethics