Skip to main content

Extending the Reach of Molecular Replacement

  • Conference paper
  • First Online:
Advancing Methods for Biomolecular Crystallography

Abstract

Molecular replacement is already able to solve the majority of structures in the Protein Data Bank, thanks to the rapidly increasing number of template structures available and continuous improvements in the algorithms. Chances of success can be optimised by proper preparation of models, for instance by trimming poorly-conserved regions, creating an ensemble of alternative models or applying advanced homology modeling tools. The sensitivity of the molecular replacement search can be improved by using likelihood targets; these lend themselves to automation, which makes it possible to carry out extensive searches and helps to avoid user errors. The convergence radius of model completion can be extended by using methods that smoothly deform the starting model or apply advanced modeling techniques. Even more difficult structures can be solved by combining molecular replacement with other phasing methods, such as SAD phasing or multi-crystal averaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66:213–221

    Article  Google Scholar 

  2. Brunger AT, Das D, Deacon AM, Grant J, Terwilliger TC, Read RJ, Adams PD, Levitt M, Schröder GF (2012) Application of DEN-refinement and automated model-building to a difficult case of molecular replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum. Acta Crystallogr D 68:391–403

    Article  Google Scholar 

  3. Bunkóczi G, Read RJ (2011) Improvement of molecular replacement models with Sculptor. Acta Crystallogr D 67:303–312

    Article  Google Scholar 

  4. DiMaio F, Terwilliger TC, Read RJ, Wlodawer A, Oberdorfer G, Wagner U, Valkov E, Alon A, Fass D, Axelrod HL, Das D, Vorobiev SM, Iwaï H, Pokkuluri PR, Baker D (2011) Improving molecular replacement by density- and energy-guided protein structure optimization. Nature 473:540–543

    Article  CAS  Google Scholar 

  5. Glykos NM, Kokkinidis M (2001) Multidimensional molecular replacement. Acta Crystallogr D 57:1462–1473

    Article  CAS  Google Scholar 

  6. Keegan RM, Winn MD (2008) MrBUMP: an automated pipeline for molecular replacement. Acta Crystallogr D 64:119–124

    Article  Google Scholar 

  7. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666

    Article  CAS  Google Scholar 

  8. Kissinger CR, Gehlhaar DK, Fogel DB (1999) Rapid automated molecular replacement by evolutionary search. Acta Crystallogr D 55:484–491

    Article  CAS  Google Scholar 

  9. Lebedev AA, Vagin AA, Murshudov G (2008) Model preparation in MOLREP and examples of model improvements using X-ray data. Acta Crystallogr D 64:33–39

    Article  Google Scholar 

  10. Long F, Vagin AA, Young P, Murshudov G (2007) BALBES: a molecular-replacement pipeline. Acta Crystallogr D 64:125–132

    Article  Google Scholar 

  11. McCoy AJ (2004) Liking likelihood. Acta Crystallogr D 60:2169–2183

    Article  Google Scholar 

  12. McCoy AJ, Read RJ (2010) Experimental phasing: best practice and pitfalls. Acta Crystallogr D 66:458–469

    Article  Google Scholar 

  13. McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D 61:458–464

    Article  Google Scholar 

  14. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  Google Scholar 

  15. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67:355–367

    Article  Google Scholar 

  16. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  CAS  Google Scholar 

  17. Qian B, Raman S, Das R, Bradley P, McCoy AJ, Read RJ, Baker D (2007) High-resolution structure prediction and the crystallographic phase problem. Nature 450:259–264

    Article  CAS  Google Scholar 

  18. Read RJ (2001) Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D 57:1373–1382

    Article  CAS  Google Scholar 

  19. Read RJ, McCoy AJ (2011) Using SAD data in Phaser. Acta Crystallogr D 67:338–344

    Article  Google Scholar 

  20. Rigden DJ, Keegan RM, Winn MD (2008) Molecular replacement using ab initio polyalanine models generated with ROSETTA. Acta Crystallogr D 64:1288–1291

    Article  Google Scholar 

  21. Rodríguez DD, Grosse C, Himmel S, González C, de Ilarduya IM, Becker S, Sheldrick GM, Usón I (2009) Crystallographic ab initio protein structure solution below atomic resolution. Nat Methods 6:651–653

    Article  Google Scholar 

  22. Rossmann MG (1972) The molecular replacement method. Gordon & Breach, New York

    Google Scholar 

  23. Schröder GF, Levitt M, Brunger AT (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 464:1218–1222

    Article  Google Scholar 

  24. Schwarzenbacher R, Godzik A, Grzechnik SK, Jaroszewski L (2004) The importance of alignment accuracy for molecular replacement. Acta Crystallogr D 60:1229–1236

    Article  Google Scholar 

  25. Storoni LC, McCoy AJ, Read RJ (2004) Likelihood-enhanced fast rotation functions. Acta Crystallogr D 60:432–438

    Article  Google Scholar 

  26. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung L-W, Read RJ, Adams PD (2008) Iterative model building, structure refinement and density modification with the Phenix AutoBuild wizard. Acta Crystallogr D 64:61–69

    Article  Google Scholar 

  27. Terwilliger TC, DiMaio F, Read RJ, Baker D, Bunkóczi G, Adams PD, Grosse-Kunstleve RW, Afonine PV, Echols N (2012) phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta. J Struct Funct Genomics 13(2):81–90. doi:10.1007/s10969-012-9129-3

    Article  CAS  Google Scholar 

  28. Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  29. Zhou A, Carrell RW, Murphy MP, Wei Z, Yan Y, Stanley PLD, Stein PE, Broughton Pipkin F, Read RJ (2010) A redox switch in angiotensinogen modulates angiotensin release. Nature 468:108–111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work on Phaser is supported by awards from the Wellcome Trust (082961/Z/07/Z) and the NIH (Grant No. P01GM063210). We are grateful to users who provide us with bug reports and challenging problems that push the limits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy J. Read .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Read, R.J., McCoy, A.J., Oeffner, R.D., Bunkóczi, G. (2013). Extending the Reach of Molecular Replacement. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_11

Download citation

Publish with us

Policies and ethics