Skip to main content

Evaluation of the Tumor Immunoenvironment in Clinical Trials

  • Chapter
  • First Online:
The Tumor Immunoenvironment

Abstract

Monitoring of immunotherapeutic clinical trials has undergone a considerable change in the last decade resulting in a general agreement that immune monitoring should guide the development of cancer vaccines. The emphasis on immune cell functions and the quantitation of antigen-specific T cells has played a major role in the attempts to establish meaningful correlations between therapy-induced alterations in immune responses and clinical endpoints. However, one significant unresolved issue in modern immunotherapy is that when a tumor-specific cellular immune response is observed following a course of immunotherapy, it does not always lead to clinically proven cancer regression. This disappointing lack of a correlation between the tumor-specific cytotoxic immune responses and the therapeutic benefit may be explained in part by the notion that the analysis of any single immunological parameter is not sufficient to provide detailed information about the complex interactions between different cell subsets in the peripheral blood or immune, tumor, and stromal cells in the tumor milieu itself. Therefore, following administration of vaccines or immunomodulators, a systemic approach is required to improve the quality of a serial monitoring to ensure that it adequately and reliably measures crucial beneficial immunological changes induced in patients. Comprehensive evaluation of the balance between the immunostimulatory and immunosuppressive compartments of the immune system could be critical for obtaining a better understanding of why a given immunotherapy does or does not work in a particular clinical trial. New approaches to characterize tumor-infiltrating leukocytes, including their phenotypic, biochemical and genetic characteristics within the tumor microenvironment need to be developed, validated and standardized for reliability and consistency in order to establish the rigorous performance standards that should additionally complement current monitoring techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashida A, Boku N, Aoyagi K, Sato H, Tsubosa Y, Minashi K, Muto M, Ohtsu A, Ochiai A, Yoshida T, Yoshida S, Sasaki H (2006) Expression profiling of esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy: clinical implications. Int J Oncol 28(6):1345–1352

    PubMed  CAS  Google Scholar 

  • Bedognetti D, Wang E, Sertoli MR, Marincola FM (2010) Gene-expression profiling in vaccine therapy and immunotherapy for cancer. Expert Rev Vaccines 9(6):555–565

    Article  PubMed  CAS  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265

    Article  PubMed  CAS  Google Scholar 

  • Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Hakansson L, Janetzki S, Kawakami Y, Kleen TO, Lee PP, Maccalli C, Maecker HT, Maino VC, Maio M, Malyguine A, Masucci G, Pawelec G, Potter DM, Rivoltini L, Salazar LG, Schendel DJ, Slingluff CL Jr, Song W, Stroncek DF, Tahara H, Thurin M, Trinchieri G, van Der Burg SH, Whiteside TL, Wigginton JM, Marincola F, Khleif S, Fox BA, Disis ML (2011) Recommendations from the iSBTc-SITC/FDA/NCI workshop on immunotherapy biomarkers. Clin Cancer Res 17(10):3064–3076

    Article  PubMed  CAS  Google Scholar 

  • Chen KJ, Zhou L, Xie HY, Ahmed TE, Feng XW, Zheng SS (2011) Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection. Medical oncology, Northwood, London, England, 2011 (in press)

    Google Scholar 

  • Cipponi A, Wieers G, van Baren N, Coulie PG (2011) Tumor-infiltrating lymphocytes: apparently good for melanoma patients. But why? Cancer Immunol Immunother 60(8):1153–1160

    Article  PubMed  Google Scholar 

  • Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32(1):19–25

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M, Wei S, Zou L, Kryczek I, Hoyle G, Lackner A, Carmeliet P, Zou W (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64(16):5535–5538

    Article  PubMed  CAS  Google Scholar 

  • Filipazzi P, Huber V, Rivoltini L (2012) Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother 61(2):255–263

    Article  PubMed  CAS  Google Scholar 

  • Gajewski T (2012) Harnessing the immune response. Clin Adv Hematol Oncol 10(1):46–48

    PubMed  Google Scholar 

  • Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J (2010) Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol 23(2):286–292

    Article  PubMed  Google Scholar 

  • Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA, Gajewski TF, Ascierto PA (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1

    Article  PubMed  Google Scholar 

  • Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, Pommerencke T, von Knebel Doeberitz M, Folprecht G, Luber B, Feyen N, Martens UM, Beckhove P, Gnjatic S, Schirmacher P, Herpel E, Weitz J, Grabe N, Jaeger D (2011) Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer research

    Google Scholar 

  • Hornychova H, Melichar B, Tomsova M, Mergancova J, Urminska H, Ryska A (2008) Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer Invest 26(10):1024–1031

    Article  PubMed  CAS  Google Scholar 

  • Jandus C, Bioley G, Speiser DE, Romero P (2008) Selective accumulation of differentiated FOXP3(+) CD4(+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother 57(12):1795–1805

    Article  PubMed  CAS  Google Scholar 

  • Jochems C, Schlom J (2011) Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med 236(5):567–579

    Google Scholar 

  • Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishiwaki Y, Gemma A, Kudoh S, Ochiai A (2008) Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113(6):1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Le DT, Ladle BH, Lee T, Weiss V, Yao X, Leubner A, Armstrong TD, Jaffee EM (2011) CD8 Foxp3 tumor infiltrating lymphocytes accumulate in the context of an effective anti-tumor response. Int J Cancer 129(3):636–647

    Article  PubMed  CAS  Google Scholar 

  • Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629

    PubMed  CAS  Google Scholar 

  • Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, Boezen HM, van der Zee AG, Daemen T, Nijman HW (2009) Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58(3):449–459

    Article  PubMed  Google Scholar 

  • Liu F, Lang R, Zhao J, Zhang X, Pringle GA, Fan Y, Yin D, Gu F, Yao Z, Fu L (2011) CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 130(2):645–655

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Zhu XQ, Xu ZL, Zhou Q, Zhang J, Wu F (2009) Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery 145(3):286–293

    Article  PubMed  Google Scholar 

  • Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8 + lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955

    Article  PubMed  Google Scholar 

  • Malyguine AM, Strobl SL, Shurin MR (2012) Immunological monitoring of the tumor immunoenvironment for clinical trials. Cancer Immunol Immunother 61(2):239–247

    Article  PubMed  CAS  Google Scholar 

  • Murphy GF, Radu A, Kaminer M, Berd D (1993) Autologous melanoma vaccine induces inflammatory responses in melanoma metastases: relevance to immunologic regression and immunotherapy. J Invest Dermatol 100(3):335S–341S

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Gabrilovich DI (2010) Myeloid-derived suppressor cells in human cancer. Cancer J 16(4):348–353

    Google Scholar 

  • Naiditch H, Shurin MR, Shurin GV (2011) Targeting myeloid regulatory cells in cancer by chemotherapeutic agents. Immunol Res 50(2–3):276–285

    Article  PubMed  CAS  Google Scholar 

  • Ohtani H (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun 7:4

    PubMed  Google Scholar 

  • Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK, Zeh H, Holtzman MP, Reinhart TA, Whiteside TL, Butterfield LH, Hamilton RL, Potter DM, Pollack IF, Salazar AM, Lieberman FS (2011) Induction of CD8 + T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethyl cellulose in patients with recurrent malignant glioma. J Clin Oncol 29(3):330–336

    Article  PubMed  CAS  Google Scholar 

  • Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2009a) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29(8):1093–1102

    Article  PubMed  Google Scholar 

  • Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009b) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951

    Article  PubMed  CAS  Google Scholar 

  • Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, Melief CJ, Kenter GG, Fleuren GJ, Offringa R, van der Burg SH (2007) High number of intraepithelial CD8 + tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 67(1):354–361

    Article  PubMed  CAS  Google Scholar 

  • Quezada SA, Peggs KS, Simpson TR, Allison JP (2011) Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 241(1):104–118

    Article  PubMed  CAS  Google Scholar 

  • Ribas A, Camacho LH, Lee SM, Hersh EM, Brown CK, Richards JM, Rodriguez MJ, Prieto VG, Glaspy JA, Oseguera DK, Hernandez J, Villanueva A, Chmielowski B, Mitsky P, Bercovici N, Wasserman E, Landais D, Ross MI (2010) Multicenter phase II study of matured dendritic cells pulsed with melanoma cell line lysates in patients with advanced melanoma. J Transl Med 8:89

    Article  PubMed  Google Scholar 

  • Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, Royal RE, Kammula U, Restifo NP, Hughes MS, Schwartzentruber D, Berman DM, Schwarz SL, Ngo LT, Mavroukakis SA, White DE, Steinberg SM (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8 + T cells in patients with melanoma. J Immunol 175(9):6169–6176

    PubMed  CAS  Google Scholar 

  • Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3 + T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27(2):186–192

    Article  PubMed  Google Scholar 

  • Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, Kendra KL, White RL, Gonzalez R, Kuzel TM, Curti B, Leming PD, Whitman ED, Balkissoon J, Reintgen DS, Kaufman H, Marincola FM, Merino MJ, Rosenberg SA, Choyke P, Vena D, Hwu P (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. New Engl J Med 364(22):2119–2127

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S, Bajorin DF, Reuter VE, Herr H, Old LJ, Sato E (2007) CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci U S A 104(10):3967–3972

    Article  PubMed  CAS  Google Scholar 

  • Shimura S, Yang G, Ebara S, Wheeler TM, Frolov A, Thompson TC (2000) Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res 60(20):5857–5861

    PubMed  CAS  Google Scholar 

  • Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, Zhong H, Han B, Ferris RL (2006) Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25(3):333–356

    Article  PubMed  CAS  Google Scholar 

  • Shurin MR, Gregory M, Morris JC, Malyguine AM (2010) Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin Biol Ther 10(11):1539–1553

    Article  PubMed  CAS  Google Scholar 

  • Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ (2009) Intraepithelial effector (CD3 +)/regulatory (FoxP3 +) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137(4):1270–1279

    Article  PubMed  CAS  Google Scholar 

  • Talmadge JE (2011) Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol 21(2):131–138

    Article  PubMed  CAS  Google Scholar 

  • Uppaluri R, Dunn GP, Lewis JS Jr (2008) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in head and neck cancers. Cancer Immun 8:16

    PubMed  Google Scholar 

  • Wang E, Marincola FM (2000) A natural history of melanoma: serial gene expression analysis. Immunol Today 21(12):619–623

    Article  PubMed  CAS  Google Scholar 

  • Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125(2 Suppl 2):S272–S283

    Article  PubMed  Google Scholar 

  • Whiteside TL (2012) What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol 22(4):327–334

    Article  PubMed  CAS  Google Scholar 

  • Whiteside TL, Schuler P, Schilling B (2012) Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther 12(10):1383–1397

    Article  PubMed  CAS  Google Scholar 

  • Yoon HH, Orrock JM, Foster NR, Sargent DJ, Smyrk TC, Sinicrope FA (2012) Prognostic impact of FoxP3 + regulatory T cells in relation to CD8 + T lymphocyte density in human colon carcinomas. PLoS ONE 7(8):e42274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by NIH RO1 CA154369 grant (to M.R.S.). This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoli Malyguine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Malyguine, A., Dunham, K., Sayers, T.J., Shurin, M.R. (2013). Evaluation of the Tumor Immunoenvironment in Clinical Trials. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_30

Download citation

Publish with us

Policies and ethics