Skip to main content

Abstract

Synthetic serine protease inhibitors, such as nafamostat mesilate, gabexate mesilate and ulinastatin inhibit various kinds of plasma proteinases and are widely used for treatment of pancreatitis, disseminated intravascular coagulation and as an anticoagulant for hemolysis. Several reports describe in preclinical cancer models that synthetic serine protease inhibitors induce apoptosis, prevent tumor invasion or metastasis, and sensitize chemotherapy by inhibiting NF-κB activity, proteinases such as urokinase-type plasminogen activator (u-PA) and matrix metalloproteinases (MMPs) and trypsin combined with protease-activated receptor-2 (PAR-2). Nafamostat mesilate, the first synthetic serine protease inhibitor that underwent clinical testing, has showed impressive anti-tumor effect and manageable toxicities in Phase I and II trials by combination chemotherapy of gemcitabine with nafamostat mesilate for unresectable pancreatic cancer. Synthetic serine protease inhibitors have minimal adverse effects and will have a potential to become a new therapeutic option for cancer patients. Below we discuss the rationale behind targeting the serine protease inhibitor for cancer therapy, and review the preclinical and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    Article  PubMed  CAS  Google Scholar 

  2. Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O’Donnell E, Salvesen GS, Travis J, Whisstock JC (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276:33293–33296

    Article  PubMed  CAS  Google Scholar 

  3. DeClerck YA, Imren S (1994) Protease inhibitors: role and potential therapeutic use in human cancer. Eur J Cancer 30A:2170–2180

    Article  PubMed  CAS  Google Scholar 

  4. Fujii S, Hitomi Y (1981) New synthetic inhibitors of C1r, C1 esterase, thrombin, kallikrein and trypsin. Biochim Biophys Acta 661:342–345

    Article  PubMed  CAS  Google Scholar 

  5. Iwaki M, Ino Y, Motoyoshi A, Ozeki M, Sato T, Kurumi M, Aoyama T. (1986) Pharmacological studies of FUT-175, nafamostat mesilate. V. Effects on the pancreatic enzymes and experimental acute pancreatitis in rats. Jpn J Phamacol 41: 155–162

    Google Scholar 

  6. Takahashi H, Takizawa S, Tatewaki W, Nagai K, Wada K, Hanano M, Shibata A (1989) Nafamostat mesilate (FUT-175) in the treatment of patients with disseminated intravascular coagulations. Thomb Haemost 62:372

    Google Scholar 

  7. Ohtake Y, Hirasawa H, Sugai T, Oda S, Shiga H, Matsuda K, Kitamura N (1991) Nafamostat mesilate as anticoagulant in continuous hemofiltration and continuous hemodiafiltration. Contr Nephrol 93:215–217

    CAS  Google Scholar 

  8. Kitagawa H, Chang H, Fujita T (1995) Hyperkalemia Due to Nafamostat Mesylate. N Engl J Med 332:687

    Article  PubMed  CAS  Google Scholar 

  9. Ohno H, Kosaki G, Kambayashi J, Imaoka S, Hirata F (1980) FOY: [ethyl P-(6-guanidinohexanoyloxy) benzoate] methanesulfonate as a serine proteinase inhibitor. I. Inhibition of thrombin and factor Xa in vitro. Thromb Res 19:579–588

    Article  PubMed  CAS  Google Scholar 

  10. Chen HM, Chen JC, Hwang TL, Jan YY, Chen MF (2000) Prospective and randomized study of gabexate mesilate for the treatment of severe acute pancreatitis with organ dysfunction. Hepatogastroenterology 47:1147–1150

    PubMed  CAS  Google Scholar 

  11. Inoue K, Takano H (2010) Urinary trypsin inhibitor as a therapeutic option for endotoxin-related inflammatory disorders. Expert Opin Investig Drugs 19:513–520

    Article  PubMed  CAS  Google Scholar 

  12. Amer BA, David B (1996) An essential role for NF-κB in preventing TNF-alpha-induced cell death. Science 274:782–784

    Article  Google Scholar 

  13. Karin M, Lin A (2002) NF-κB at the crossroads of life and death. Nature Immunol 3:221–227

    Article  CAS  Google Scholar 

  14. Matsumoto G, Namekawa J, Muta M, Nakamura T, Bando H, Tohyama K, Toi M, Umezawa K (2005) Targeting of nuclear factor κB pathways by Dehydroxymethyleoxyquinomicin, a novel inhibitor of breast carcinomas: antitumor and antiangiogenic potential in vivo. Clin Cancer Res 11:1287–1293

    PubMed  CAS  Google Scholar 

  15. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ (2001) Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20:4188–4197

    Article  PubMed  CAS  Google Scholar 

  16. Uwagawa T, Li Z (2007) Chang Zhe, Xia Q, Peng B, Sclabas GM, Ishiyama S, Hung MC, Evans DB, Abbruzzese JL, Chiano PJ. Mechanisms of synthetic serine protease inhibitor (FUT-175)-mediated cell death. Cancer 109:2142–2153

    Article  PubMed  CAS  Google Scholar 

  17. Furukawa K, Iida T, Shiba H, Fujiwara Y, Uwagawa T, Shimada Y, Misawa T, Ohashi T, Yanaga K (2010) Anti-tumor effect by inhibition of NF-κB activation using nafamostat mesilate for pancreatic cancer in a mouse model. Oncol Rep 24:843–850

    Article  PubMed  CAS  Google Scholar 

  18. Fujiwara Y, Furukawa K, Haruki K, Shimada Y, Iida T, Shiba H, Uwagawa T, Ohashi T, Yanaga K (2011) Nafamostat mesilate can prevent adhesion, invasion and peritoneal dissemination of pancreatic cancer thorough nuclear factor kappa-B inhibition. J Hepatobiliary Pancreat Sci 18:731–739

    Article  PubMed  Google Scholar 

  19. Uwagawa T, Chiano PJ, Gocyo T, Hirohara S, Misawa T, Yanaga K (2009) Combination chemotherapy of nafamostat mesilate with gemcitabine for pancreatic cancer targeting NF-κB activation. Anticancer Res 29:3173–3178

    PubMed  CAS  Google Scholar 

  20. Haruki K, Shiba H, Fujiwara Y, Furukawa K, Iwase R, Uwagawa T, Misawa T, Ohashi T, Yanaga K (2012) Inhibition of nuclear factor-κB enhances the antitumor effect of paclitaxel against gastric cancer with peritoneal dissemination in mice. Dig Dis Sci [Epub ahead of print]

    Google Scholar 

  21. Uwagawa T, Misawa T, Sakamoto T, Ito R, Gocho T, Shiba H, Wakiyama S, Hirohara S, Sadaoka S, Yanaga K (2009) A phase I study of full-dose gemcitabine and regional arterial infusion of nafamostat mesilate for advanced pancreatic cancer. Ann Oncol 20:239–243

    Article  PubMed  CAS  Google Scholar 

  22. Uwagawa T, Misawa T, Tsutsui N, Ito R, Gocho T, Hirohara S, Sadaoka S, Yanaga K (2011) Phase II study of gemcitabine in combination with regional arterial infusion of nafamostat mesilate for advanced pancreatic cancer. Am J Clin Oncol [Epub ahead of print]

    Google Scholar 

  23. Furukawa K, Ohashi T, Haruki K, Fujiwara Y, Iida T, Shiba H, Uwagawa T, Kobayashi H, Yanaga K (2011) Combination treatment using adenovirus vector-mediated tumor necrosis factor-alpha gene transfer and a NF-κB inhibitor for pancreatic cancer in mice. Cancer Lett 306:92–98

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi H, Funahashi H, Sawai H, Matsuo Y, Yamamoto M, Okada Y, Takeyama H, Manabe T (2007) Synthetic serine protease inhibitor, gabexate mesilate, prevents nuclear factor-kappaB activation and increases TNF-alpha-mediated apoptosis in human pancreatic cancer cells. Dig Dis Sci 52:2646–2652

    Article  PubMed  CAS  Google Scholar 

  25. Wang H, Sun X, Gao F, Zhong B, Zhang YH, Sun Z (2012) Effect of ulinastatin on growth inhibition, apoptosis of breast carcinoma cells is related to a decrease in signal conduction of JNk-2 and NF-κB. J Exp Clin Cancer Res 31:2

    Article  PubMed  CAS  Google Scholar 

  26. Liotta LA, Stetler-Stevenson WG (1991) Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 15:5054s–5059s

    Google Scholar 

  27. Naito K, Kanbayashi N, Nakajima S, Murai T, Arakawa K, Nishimura S, Okuyama A (1994) Inhibition of growth of human tumor cells in nude mice by a metalloproteinase inhibitor. Int J Cancer 58:730–735

    Article  PubMed  CAS  Google Scholar 

  28. Reich R, Thompson EW, Iwamoto Y, Martin GR, Deason JR, Fuller GC, Miskin R (1988) Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells. Cancer Res 48:3307–3312

    PubMed  CAS  Google Scholar 

  29. Nguyen M, Arkell J, Jackson CJ (1999) Thrombin rapidly and efficiently activates gelatinase A in human microvascular endothelial cells via a mechanism independent of active MT1 matrix metalloproteinase. Lab Invest 79:467–475

    PubMed  CAS  Google Scholar 

  30. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274:13066–13076

    Article  PubMed  CAS  Google Scholar 

  31. Uchima Y, Sawada T, Nishihara T, Maeda K, Ohira M, Hirakawa K (2004) Inhibition and mechanism of a protease inhibitor in human pancreatic cancer cells. Pancreas 29:123–131

    Article  PubMed  CAS  Google Scholar 

  32. Yoon WH, Jung YJ, Kim TD, Li G, Park BJ, Kim JY, Lee YC, Kim JM, Park JI, Park HD, No ZS, Lim K, Hwang SD, Kim YS (2004) Gabexate mesilate inhibits colon cancer growth, invasion, and metastasis by reducing matrix matalloproteinases and angiogenesis. Clin Cancer Res 10:4517–4526

    Article  PubMed  CAS  Google Scholar 

  33. Koivunen E, Saksela O, Itkonen O, Osman S, Huhtala ML, Stenman UH (1991) Human colon carcinoma, fibrosarcoma and leukemia cell lines produce tumor-associated trypsinogen. Int J Cancer 47:592–596

    Article  PubMed  CAS  Google Scholar 

  34. Nystedt S, Emilsson K, Larsson AK, Strömbeck B, Sundelin J (1995) Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem 232:84–89

    Article  PubMed  CAS  Google Scholar 

  35. Darmoul D, Gratio V, Devaud H, Laburthe M (2004) Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J Biol Chem 279:20927–22094

    Article  PubMed  CAS  Google Scholar 

  36. Miyata S, Koshikawa N, Yasumitsu H, Miyazaki K (2000) Trypsin stimulates integrin alpha(5)beta(1)-dependent adhesion to fibronectin and proliferation of human gastric carcinoma cells through activation of proteinase-activated receptor-2. J Biol Chem 275:4592–4598

    Article  PubMed  CAS  Google Scholar 

  37. Ohta T, Shimizu K, Yi S, Takamura H, Amaya K, Kitagawa H, Kayahara M, Ninomiya I, Fushida S, Fujimura T, Nishimura G, Miwa K (2003) Protease-activated receptor-2 expression and the role of trypsin in cell proliferation in human pancreatic cancers. Int J Oncol 23:61–66

    PubMed  CAS  Google Scholar 

  38. Nakanuma S, Tajima H, Okamoto K, Hayashi H, Nakagawara H, Onishi I, Takamura H, Kitagawa H, Fushida S, Tani T, Fujimura T, Kayahara M, Ohta T, Wakayama T, Iseki S, Harada S (2010) Tumor-derived trypsin enhances proliferation of intrahepatic cholangiocarcinoma cells by activating protease-activated receptor-2. Int J Oncol 36:793–800

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenei Furukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Furukawa, K., Uwagawa, T., Yanaga, K. (2013). Anti-Tumor Effect of Synthetic Serine Protease Inhibitor. In: Fang, E., Ng, T. (eds) Antitumor Potential and other Emerging Medicinal Properties of Natural Compounds. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6214-5_13

Download citation

Publish with us

Policies and ethics