Skip to main content

Torque-Based Balancing

  • Reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

This chapter presents an overview of balance control approaches which utilize joint torque as the control input. Such control approaches are particularly useful for robots with explicit measurement of the generalized actuation forces allowing for an inner loop torque control. As a system model, floating base robot dynamics is considered in combination with a set of contact constraints. After discussion of the problem of how to control contact forces for a constrained mechanical system, a detailed treatment of the force distribution problem is given, which appears in multi-contact situations of legged robots. In addition, the basic approaches to implement joint torque control in electrically and hydraulically actuated robots are discussed. The chapter presents the general control theory based on dynamic inversion and passivity theory and highlights some successful implementations using two torque-controlled humanoid robots based on electric and hydraulic actuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Hollerbach, K. Suh, Redundancy resolution of manipulators through torque optimization. IEEE J. Robot. Autom. 3(4), 308–316 (1987)

    Article  Google Scholar 

  2. O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. RA-3(1), 43–53 (1987)

    Article  Google Scholar 

  3. A. De Luca, G. Oriolo, Issues in acceleration resolution of robot redundancy, in 3rd IFAC Sympoisum on Robot Control, Vienna, 1999, pp. 93–98

    Google Scholar 

  4. Y. Fujimoto, A. Kawamura, Simulation of an autonomous biped walking robot including environmental force interaction. IEEE Robot. Autom. Mag. 5(2), 33–42 (1998)

    Article  Google Scholar 

  5. J. Yamaguchi, N. Kinoshita, A. Takanishi, I. Kato, Development of a dynamic biped walking system for humanoid development of a biped walking robot adapting to the humans’ living floor, in IEEE International Conference on Robotics and Automation, vol. 1, 1996, pp. 232–239

    Google Scholar 

  6. K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, The development of the Honda humanoid robot, in IEEE International Conference on Robotics and Automation, Leuven, 1998, pp. 1321–1328

    Google Scholar 

  7. J. Pratt, C. Chew, A. Torres, P. Dilworth, G. Pratt, Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129–143 (2001)

    Article  Google Scholar 

  8. G.A. Pratt, M.M. Williamson, Series elastic actuators, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 1995, pp. 399–406

    Google Scholar 

  9. S. Hyon, J.G. Hale, G. Cheng, Full-body compliant human-humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans. Robot. 23(5), 884–898 (2007)

    Article  Google Scholar 

  10. A. Albu-Schaeffer, C. Ott, G. Hirzinger, A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)

    Google Scholar 

  11. S. Arimoto, M. Sekimoto, H. Hashiguchi, R. Ozawa, Natural resolution of ill-posedness of inverse kinematics for redundant robots: a challenge to bernstein’s degrees-of-freedom problem. Adv. Robot. 19(4), 401–434 (2005)

    Article  Google Scholar 

  12. S. Hyon, Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Trans. Robot. 25(1), 171–178 (2009)

    Article  Google Scholar 

  13. C. Ott, M.A. Roa, G. Hirzinger, Posture and balance control for biped robots based on contact force optimization, in IEEE-RAS International Conference on Humanoid Robots, 2011, pp. 26–33

    Google Scholar 

  14. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation CRC Press, Inc. Boca Raton, FL, USA, (1994)

    Google Scholar 

  15. L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Rob. 2(4), 505–518 (2005)

    Article  Google Scholar 

  16. M. Michael, J. Nakanishi, G. Cheng, S.A. Stefan, Inverse kinematics with floating base and constraints for full body humanoid robot control, in IEEE-RAS International Conference on Humanoid Robots, 2008, pp. 22–27

    Google Scholar 

  17. B. Stephens, C. Atkeson, Dynamic balance force control for compliant humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 1248–1255

    Google Scholar 

  18. R. Murray, Z. Li, S. Sastry A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994)

    Google Scholar 

  19. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 1644–1650

    Google Scholar 

  20. D. Orin, A. Goswami, S. Lee, Centroidal dynamics of a humanoid robot. Auton. Robot. 35, 161–176 (2013)

    Article  Google Scholar 

  21. G. Garofalo, B. Henze, J. Engelsberger, C. Ott, On the inertially decoupled structure of the floating base robot dynamics, in 8th Vienna International Conference on Mathematical Modelling (MATHMOD), 2015, pp. 322–327

    Article  Google Scholar 

  22. B. Henze, M.A. Roa, C. Ott, Passivity-based whole-body balancing for torque-controlled humanoid robots in multi-contact scenarios. The International Journal of Robotics Research (IJRR), 35(12), pp 1522–1543 (2016)

    Article  Google Scholar 

  23. S. Zhang, E.D. Fasse, Spatial compliance modeling using a quaternion-based potential function method. Multibody Sys. Dyn. 4, 75–101 (2000)

    Google Scholar 

  24. A. Herzog, L. Righetti, F. Grimminger, P. Pastor, S. Schaal, Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 981–988

    Google Scholar 

  25. G. Hirzinger, N. Sporer, A. Albu-Schaeffer, M. Haehnle, R. Krenn, A. Pascucci, M. Schedl, DLR’s torque-controlled light weight robot III – are we reaching the technological limits now? in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 1710–1716

    Google Scholar 

  26. C. Ott, A. Albu-Schaeffer, A. Kugi, G. Hirzinger, On the passivity based impedance control of flexible joint robots. IEEE Trans. Rob. 24(2), 416–429 (2008)

    Article  Google Scholar 

  27. L.L. Tien, A. Albu-Schaeffer, A.D. Luca, G. Hirzinger, Friction observer and compensation for control of robots with joint torque measurement, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 3789–3795

    Google Scholar 

  28. M.J. Kim, W.K. Chung, Disturbance-observer-based pd control of flexible joint robots for asymptotic convergence. IEEE Trans. Rob. 31(6), 1508–1516 (2015)

    Article  Google Scholar 

  29. H.E. Merrit, Hydraulic Control Systems (Wiley, New York, 1967)

    Google Scholar 

  30. S. Hyon, D. Suewaka, Y. Torii, and N. Oku, Design and experimental evaluation of a fast torque-controlled hydraulic humanoid robot. IEEE/ASME Transactions on Mechatronics, 22(2), pp. 623–634, (2017)

    Article  Google Scholar 

  31. A. Alleyne, R. Liu, A simplified approach to force control for electro-hydraulic systems. Control. Eng. Pract. 8(12), 1347–1356 (2000)

    Article  Google Scholar 

  32. B. Yao, F. Bu, J. Reedy, G.T.C. Chiu, Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments, in American Control Conference, vol. 2, 1999, pp. 759–763

    Google Scholar 

  33. H.K. Khalil, Nonlinear Systems, 2nd edn. (Prentice-Hall, Upper Saddle River, 1996)

    Google Scholar 

  34. L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipulators, 2nd edn. (Springer, London, 1996)

    Google Scholar 

  35. A. Takanishi, T. Takeya, H. Karaki, I. Kato, A control method for dynamic biped walking under unknown external force, in IEEE International Workshop on Intelligent Robots and Systems, Tsuchiura, 1990, pp. 795–801

    Google Scholar 

  36. J. Yamaguchi, E. Soga, S. Inoue, A. Takanishi, Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking, in IEEE International Conference on Robotics and Automation, Detroit, 1999, pp. 368–374

    Google Scholar 

  37. T. Sugihara, Y. Nakamura, Whole-body cooperative balancing of humanoid robot using COG Jacobian, in IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, vol. 3, 2002, pp. 2575–2580

    Google Scholar 

  38. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, 2003, pp. 1644–1650

    Google Scholar 

  39. J. Englsberger, A. Werner, C. Ott, M.A.R.B. Henze, G. Garofalo, R. Burger, A. Beyer, O. Eiberger, K. Schmid, A. Albu-Schaeffer, Overview of the torque-controlled humanoid robot TORO, in IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 916–923

    Google Scholar 

  40. C. Ott, B. Henze, G. Hettich, T.N. Seyde, M.A. Roa, V. Lippi, T. Mergner, Good posture, good balance: comparison of bioinspired and model-based approaches for posture control of humanoid robots. IEEE Robot. Autom. Mag. 23, 22–33 (2016)

    Article  Google Scholar 

  41. B. Henze, A. Dietrich, C. Ott, An approach to combine balancing with hierarchical whole-body control for legged humanoid robots. IEEE Robot. Automat. Lett. 1, 700–707 (2016)

    Article  Google Scholar 

  42. G. Cheng, S. Hyon, J. Morimoto, A. Ude, J.G. Hale, G. Colvin, W. Scroggin, S.C. Jacobsen, CB: a humanoid research platform for exploring neuroscience. Adv. Robot. 21(10), 1097–1114 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Ott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ott, C., Hyon, SH. (2019). Torque-Based Balancing. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6046-2_39

Download citation

Publish with us

Policies and ethics