Skip to main content

Mechanisms of Thermal Stability Adopted by Thermophilic Proteins and Their Use in White Biotechnology

  • Chapter
  • First Online:
Thermophilic Microbes in Environmental and Industrial Biotechnology

Abstract

Considerable interest has been generated in the mechanism which nature utilises to increase the stability of enzymes found in thermophilic and hyperthermophilic species. This has been the subject of many reviews, and our understanding has been enhanced by the increasing number of high-resolution thermostable enzyme structures that have been determined. Different species of bacteria and Archaea have used different mechanisms to achieve stability. A comparative approach has been used to carry out a detailed study of specific enzymes from a range of organisms in order to understand acquired stability at a structural level. This chapter will discuss the rules to increase protein thermostability that have been obtained from protein structural studies that are currently available. It will also examine other ways to stabilise existing proteins by lessons learnt from nature and by protein immobilisation.

Thermostable enzymes find applications in ‘white biotechnology’ including the biosynthesis of fine chemicals. This chapter will discuss specific examples of thermophilic enzymes already adopted for industrial applications. These include alcohol dehydrogenases for chiral alcohol production, aminoacylases for optically pure amino acids and amino acid analogues, transaminases for chiral amine production and gamma-lactamases for chiral gamma-lactam building blocks which are subsequently incorporated into carbocyclic nucleotides. A brief overview of other applications in biorefining, biofuel cells and detergents are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar CF, Sanderson I, Moracci M, Ciaramella M, Nucci R, Rossi M, Pearl LH (1997) J Mol Biol 271(5):789–802

    Article  PubMed  CAS  Google Scholar 

  • Antranikian G, Vorgias CE, Bertoldo C (2005) Adv Biochem Eng Biotechnol 96:219–262

    PubMed  CAS  Google Scholar 

  • Arai R, Kukimoto-Niino M, Kuroishi C, Bessho Y, Shirouzu M, Yokoyama S (2006) Protein Sci 15(2):373–377

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985) Biophys J 47(3):411–414

    Article  PubMed  CAS  Google Scholar 

  • Auerbach G, Huber R, Grattinger M, Zaiss K, Schurig H, Jaenicke R, Jacob U (1997) Structure 5(11):1475–1483

    Article  PubMed  CAS  Google Scholar 

  • Auerbach G, Ostendorp R, Prade L, Korndorfer I, Dams T, Huber R, Jaenicke R (1998) Structure 6(6):769–781

    Article  PubMed  CAS  Google Scholar 

  • Baxter S, Royer S, Grogan G, Brown F, Holt-Tiffin K, Taylor I, Fotheringham C (2012) J Am Chem Soc 134(47):19310–19313

    Article  PubMed  CAS  Google Scholar 

  • Beeby M, O’Connor BD, Ryttersgaard C, Boutz DR, Perry LJ, Yeates TO (2005) PLoS Biol 3(9):e309

    Article  PubMed  CAS  Google Scholar 

  • Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Extremophiles 1(1):14–21

    Article  PubMed  CAS  Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Curr Opin Biotechnol 19(3):210–217

    Article  PubMed  CAS  Google Scholar 

  • Borges N, Ramos A, Raven ND, Sharp RJ, Santos H (2002) Extremophiles 6(3):209–216

    Article  PubMed  CAS  Google Scholar 

  • Brige A, Van den Hemel D, Carpentier W, De Smet L, Van Beeumen JJ (2006) Biochem J 394(Pt 1):335–344

    PubMed  CAS  Google Scholar 

  • Brock TD, Freeze H (1969) J Bacteriol 98(1):289–297

    PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Arch Mikrobiol 84(1):54–68

    Article  PubMed  CAS  Google Scholar 

  • Brown AD (1990) Microbial water stress physiology: principles and perspectives. Wiley, Chichester/New York

    Google Scholar 

  • Bruins ME, Janssen AE, Boom RM (2001) Appl Biochem Biotechnol 90(2):155–186

    Article  PubMed  CAS  Google Scholar 

  • Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biosens Bioelectron 21(11):2015–2045

    Article  PubMed  CAS  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Science 273(5278):1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Cacciapuoti G, Porcelli M, Bertoldo C, De Rosa M, Zappia V (1994) J Biol Chem 269(40):24762–24769

    PubMed  CAS  Google Scholar 

  • Canovas D, Borges N, Vargas C, Ventosa A, Nieto JJ, Santos H (1999) Appl Environ Microbiol 65(9):3774–3779

    PubMed  CAS  Google Scholar 

  • Chan MK, Mukund S, Kletzin A, Adams MW, Rees DC (1995) Science 267(5203):1463–1469

    Article  PubMed  CAS  Google Scholar 

  • Chaparro-Riggers JF, Rogers TA, Vazquez-Figueroa E, Polizzi KM, Bommarius AS (2007) Adv Synth Catal 349(8–9):1521–1531

    Article  CAS  Google Scholar 

  • Chen BH, Sayar A, Kaulmann U, Dalby PA, Ward JM, Woodley JM (2006) Biocatal Biotransform 24(6):449–457

    Article  CAS  Google Scholar 

  • Chi YI, Martinez-Cruz LA, Jancarik J, Swanson RV, Robertson DE, Kim SH (1999) FEBS Lett 445(2–3):375–383

    Article  PubMed  CAS  Google Scholar 

  • Ciulla RA, Burggraf S, Stetter KO, Roberts MF (1994) Appl Environ Microbiol 60(10):3660–3664

    PubMed  CAS  Google Scholar 

  • Colombo S, Toietta G, Zecca L, Vanoni M, Tortora P (1995) J Bacteriol 177(19):5561–5566

    PubMed  CAS  Google Scholar 

  • Cowan DA, Fernandez-Lafuente R (2011) Enzyme Microb Technol 49(4):326–346

    Article  PubMed  CAS  Google Scholar 

  • da Costa MS, Santos H (2001) Compatible solutes in organisms that grow at high temperatures, in Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK. http://www.eolss.net

  • da Costa MS, Santos H, Galinski EA (1998) Adv Biochem Eng Biotechnol 61:117–153

    PubMed  Google Scholar 

  • Dams T, Auerbach G, Bader G, Jacob U, Ploom T, Huber R, Jaenicke R (2000) J Mol Biol 297(3):659–672

    Article  PubMed  CAS  Google Scholar 

  • Daniel RM, Danson MJ, Hough DW, Lee CK, Peterson ME, Cowan DA (2008) Enzyme stability and activity at high temperatures. In: Siddiqui KS, Thomas T (eds) Protein adaptation in extremophiles. Nova, New York, pp 1–34

    Google Scholar 

  • Davies GJ, Gamblin SJ, Littlechild JA, Watson HC (1993) Proteins 15(3):283–289

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMol molecular graphics system DeLano Scientific, San Carlos, Ca, USA. From http://www.pymol.org

  • Egorova K, Antranikian G (2005) Curr Opin Microbiol 8(6):649–655

    Article  PubMed  CAS  Google Scholar 

  • Eisenthal R, Peterson ME, Daniel RM, Danson MJ (2006) Trends Biotechnol 24(7):289–292

    Article  PubMed  CAS  Google Scholar 

  • Ermler U, Merckel M, Thauer R, Shima S (1997) Structure 5(5):635–646

    Article  PubMed  CAS  Google Scholar 

  • Esnouf RM (1997) J Mol Graphics Model 15(2):132–134, 112–133

    Google Scholar 

  • Esposito L, Sica F, Raia CA, Giordano A, Rossi M, Mazzarella L, Zagari A (2002) J Mol Biol 318(2):463–477

    Article  PubMed  CAS  Google Scholar 

  • Fleming T, Littlechild J (1997) Comp Biochem Physiol A Physiol 118(3):439–451

    Article  PubMed  CAS  Google Scholar 

  • Gerike U, Danson MJ, Russell NJ, Hough DW (1997) Eur J Biochem 248(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez M, Bagatolli LA, Echabe I, Arrondo JL, Argarana CE, Cantor CR, Fidelio GD (1997) J Biol Chem 272(17):11288–11294

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez M, Argarana CE, Fidelio GD (1999) Biomol Eng 16(1–4):67–72

    Article  PubMed  CAS  Google Scholar 

  • Grabarse W, Vaupel M, Vorholt JA, Shima S, Thauer RK, Wittershagen A, Bourenkov G, Bartunik HD, Ermler U (1999) Structure 7(10):1257–1268

    Article  PubMed  CAS  Google Scholar 

  • Guy J (2004) Biosciences. Ph.D. University of Exeter, Exeter

    Google Scholar 

  • Guy JE, Isupov MN, Littlechild JA (2003) Acta Crystallogr Sect D Biol Crystallogr 59(Pt 1):174–176

    Article  CAS  Google Scholar 

  • Harmsen H, Prieur D, Jeanthon C (1997) Appl Environ Microbiol 63(7):2876–2883

    PubMed  CAS  Google Scholar 

  • Hasan F, Shah AA, Javed S, Hameed A (2010) Afr J Biotechnol 9(31):4836–4844

    CAS  Google Scholar 

  • Hashimoto H, Inoue T, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Kai Y (1999) J Mol Biol 292(3):707–716

    Article  PubMed  CAS  Google Scholar 

  • Hennig M, Darimont B, Sterner R, Kirschner K, Jansonius JN (1995) Structure 3(12):1295–1306

    Article  PubMed  CAS  Google Scholar 

  • Hennig M, Sterner R, Kirschner K, Jansonius JN (1997) Biochemistry 36(20):6009–6016

    Article  PubMed  CAS  Google Scholar 

  • Hess D, Kruger K, Knappik A, Palm P, Hensel R (1995) Eur J Biochem 233(1):227–237

    Article  PubMed  CAS  Google Scholar 

  • Hickey AM, Ngamsom B, Wiles C, Greenway GM, Watts P, Littlechild JA (2009) Biotechnol J 4(4):510–516

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth EJ, Isupov MN, Littlechild JA (2002) Acta Crystallogr Sect D Biol Crystallogr 58(Pt 3):507–510

    Article  CAS  Google Scholar 

  • Holt-Tiffin KE (2012) The use of a thermophilic L-acylase for the manufacture of unusual α-amino acids. From http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_004b/0901b8038004be20.pdf?filepath=pharma/pdfs/noreg/195-00117.pdf&fromPage=GetDoc

  • Hopfner KP, Eichinger A, Engh RA, Laue F, Ankenbauer W, Huber R, Angerer B (1999) Proc Natl Acad Sci U S A 96(7):3600–3605

    Article  PubMed  CAS  Google Scholar 

  • Hoq M, Yamane T, Shimizu S, Funada T, Ishida S (1985) J Am Oil Chem Soc 62(6):1016–1021

    Article  CAS  Google Scholar 

  • Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A (1994) Eur J Biochem 219(1–2):187–193

    Article  PubMed  CAS  Google Scholar 

  • Hwang KY, Chung JH, Kim SH, Han YS, Cho Y (1999) Nat Struct Biol 6(7):691–696

    Article  PubMed  CAS  Google Scholar 

  • Isupov MN, Fleming TM, Dalby AR, Crowhurst GS, Bourne PC, Littlechild JA (1999) J Mol Biol 291(3):651–660

    Article  PubMed  CAS  Google Scholar 

  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) FEMS Microbiol Rev 15(1):29–63

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R (1991) Eur J Biochem 202(3):715–728

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R, Bohm G (1998) Curr Opin Struct Biol 8(6):738–748

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZQ, Li XT, Yang SQ, Li LT, Li Y, Feng WY (2006) Appl Microbiol Biotechnol 70(1):65–71

    Article  PubMed  CAS  Google Scholar 

  • Kannan N, Vishveshwara S (2000) Protein Eng 13(11):753–761

    Article  PubMed  CAS  Google Scholar 

  • Kirino H, Aoki M, Aoshima M, Hayashi Y, Ohba M, Yamagishi A, Wakagi T, Oshima T (1994) Eur J Biochem 220(1):275–281

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, de Vos WM, Rice D, Ladenstein R (1997) J Mol Biol 267(4):916–932

    Article  PubMed  CAS  Google Scholar 

  • Knochel TR, Hennig M, Merz A, Darimont B, Kirschner K, Jansonius JN (1996) J Mol Biol 262(4):502–515

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Fujiwara Y, Goda M, Komeda H, Shimizu S (1997) Proc Natl Acad Sci U S A 94(22):11986–11991

    Article  PubMed  CAS  Google Scholar 

  • Korkhin Y, Kalb AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1999) Protein Sci 8(6):1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Korndorfer I, Steipe B, Huber R, Tomschy A, Jaenicke R (1995) J Mol Biol 246(4):511–521

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Savitri, Thakur N, Verma R, Bhalla TC (2008) Res J Microbiol 3(12):661–672

    Article  CAS  Google Scholar 

  • Lentzen G, Schwarz T (2006) Appl Microbiol Biotechnol 72(4):623–634

    Article  PubMed  CAS  Google Scholar 

  • Li WT, Grayling RA, Sandman K, Edmondson S, Shriver JW, Reeve JN (1998) Biochemistry 37(30):10563–10572

    Article  PubMed  CAS  Google Scholar 

  • Li WF, Zhou XX, Lu P (2005) Biotechnol Adv 23(4):271–281

    Article  PubMed  CAS  Google Scholar 

  • Lim JH, Yu YG, Han YS, Cho S, Ahn BY, Kim SH, Cho Y (1997) J Mol Biol 270(2):259–274

    Article  PubMed  CAS  Google Scholar 

  • Lippert K, Galinski EA (1992) Appl Microbiol Biotechnol 37(1):61–65

    Article  CAS  Google Scholar 

  • Littlechild JA, Guy J, Connelly S, Mallett L, Waddell S, Rye CA, Line K, Isupov M (2007) Biochem Soc Trans 35(Pt 6):1558–1563

    Article  PubMed  CAS  Google Scholar 

  • Macedo-Ribeiro S, Darimont B, Sterner R, Huber R (1996) Structure 4(11):1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Oren A (1999) Curr Opin Microbiol 2(3):265–269

    Article  PubMed  CAS  Google Scholar 

  • Maes D, Zeelen JP, Thanki N, Beaucamp N, Alvarez M, Thi MH, Backmann J, Martial JA, Wyns L, Jaenicke R, Wierenga RK (1999) Proteins 37(3):441–453

    Article  PubMed  CAS  Google Scholar 

  • Mallick P, Boutz DR, Eisenberg D, Yeates TO (2002) Proc Natl Acad Sci U S A 99(15):9679–9684

    Article  PubMed  CAS  Google Scholar 

  • Manca MC, Lama L, Improta R, Esposito E, Gambacorta A, Nicolaus B (1996) Appl Environ Microbiol 62(9):3265–3269

    PubMed  CAS  Google Scholar 

  • Martins LO, Santos H (1995) Appl Environ Microbiol 61(9):3299–3303

    PubMed  CAS  Google Scholar 

  • Matsumura M, Becktel WJ, Matthews BW (1988) Nature 334(6181):406–410

    Article  PubMed  CAS  Google Scholar 

  • Maurer K-H (2004) Curr Opin Biotech 15(4):330–334

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA, Bacon DJ (1997) Methods Enzymol 277:505–524

    Article  PubMed  CAS  Google Scholar 

  • Meyer P, Liger D, Leulliot N, Quevillon-Cheruel S, Zhou CZ, Borel F, Ferrer JL, Poupon A, Janin J, van Tilbeurgh H (2005) Biochimie 87(12):1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Miller PS, Blum PH (2010) Environ Technol 31(8–9):1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Moehlenbrock MJ, Minteer SD (2008) Chem Soc Rev 37(6):1188–1196

    Article  PubMed  CAS  Google Scholar 

  • Morana A, Di Prizito N, AuriliaV, Rossi M, Cannio R (2002) Gene 283(1–2):107–115

    Google Scholar 

  • Ngamsom B, Hickey AM, Greenway GM, Littlechild JA, Watts P, Wiles C (2010) J Mol Catal B: Enzym 63(1–2):81–86

    Article  CAS  Google Scholar 

  • Nicolaus B, Panico A, Manca MC, Lama L, Gambacorta A, Maugeri T, Gugliandolo C, Caccamo D (2000) Syst Appl Microbiol 23(3):426–432

    Article  PubMed  CAS  Google Scholar 

  • Nicolaus B, Lama L, Panico A, Moriello VS, Romano I, Gambacorta A (2002) Syst Appl Microbiol 25(3):319–325

    Article  PubMed  CAS  Google Scholar 

  • Nicolaus B, Schiano Moriello V, Lama L, Poli A, Gambacorta A (2004) Orig Life Evol Biosph 34(1-2):159–169

    Article  PubMed  CAS  Google Scholar 

  • Nojima H, Hon-Nami K, Oshima T, Noda H (1978) J Mol Biol 122(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Odagaki Y, Hayashi A, Okada K, Hirotsu K, Kabashima T, Ito K, Yoshimoto T, Tsuru D, Sato M, Clardy J (1999) Structure 7(4):399–411

    Article  PubMed  CAS  Google Scholar 

  • Opperman DJ, Piater LA, van Heerden E (2008) J Bacteriol 190(8):3076–3082

    Article  PubMed  CAS  Google Scholar 

  • Opperman DJ, Sewell BT, Litthauer D, Isupov MN, Littlechild JA, van Heerden E (2010) Biochem Biophys Res Commun 393(3):426–431

    Article  PubMed  CAS  Google Scholar 

  • Paiva CL, Panek AD (1996) Biotechnol Annu Rev 2:293–314

    Article  PubMed  CAS  Google Scholar 

  • Potterton L, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P, Murshudov GN, Cohen S, Perrakis A, Noble M (2004) Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2288–2294

    Article  PubMed  CAS  Google Scholar 

  • Rahman RN, Fujiwara S, Nakamura H, Takagi M, Imanaka T (1998) Biochem Biophys Res Commun 248(3):920–926

    Article  PubMed  CAS  Google Scholar 

  • Robb FT, Clark DS (1999) J Mol Microbiol Biotechnol 1(1):101–105

    PubMed  CAS  Google Scholar 

  • Russell RJ, Ferguson JM, Hough DW, Danson MJ, Taylor GL (1997) Biochemistry 36(33):9983–9994

    Article  PubMed  CAS  Google Scholar 

  • Rye CA, Isupov MN, Lebedev AA, Littlechild JA (2007) Acta Crystallogr Sect D Biol Crystallogr 63(Pt 8):926–930

    Article  CAS  Google Scholar 

  • Rye CA, Isupov MN, Lebedev AA, Littlechild JA (2009) Extremophiles 13(1):179–190

    Article  PubMed  CAS  Google Scholar 

  • Sayer C, Bommer M,Isupov M, Ward J, Littlechild J (2012) Acta Cryst D 68:763–772

    Google Scholar 

  • Scholz S, Sonnenbichler J, Schäfer W, Hensel R (1992) FEBS Lett 306:239–242

    Article  PubMed  CAS  Google Scholar 

  • Segerer AH, Burggraf S, Fiala G, Huber G, Huber R, Pley U, Stetter KO (1993) Orig Life Evol Biosph 23(1):77–90

    Article  PubMed  CAS  Google Scholar 

  • Shima S, Tziatzios C, Schubert D, Fukada H, Takahashi K, Ermler U, Thauer RK (1998) Eur J Biochem 258(1):85–92

    Article  PubMed  CAS  Google Scholar 

  • Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Extremophiles 3(2):163–172

    Article  PubMed  CAS  Google Scholar 

  • Singleton M, Isupov M, Littlechild J (1999a) Structure 7(3):237–244

    Article  PubMed  CAS  Google Scholar 

  • Singleton MR, Isupov MN, Littlechild JA (1999b) Acta Crystallogr Sect D Biol Crystallogr 55(Pt 3):702–703

    Article  CAS  Google Scholar 

  • Singleton MR, Taylor SJ, Parrat JS, Littlechild JA (2000) Extremophiles 4(5):297–303

    Article  PubMed  CAS  Google Scholar 

  • Sokabe M, Kawamura T, Sakai N, Yao M, Watanabe N, Tanaka I (2002) J Struct Funct Genomics 2(3):145–154

    Article  PubMed  CAS  Google Scholar 

  • Sousa IT, Ruiu L, Lowe CR, Taipa MA (2009) J Mol Recognit 22(2):83–90

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (2006) FEMS Microbiology Rev 18(2–3):149–158

    Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) Proc Natl Acad Sci U S A 103(38):13997–14002

    Article  PubMed  CAS  Google Scholar 

  • Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Ogata K, Izu Y, Tsunasawa S, Kato I (1998) J Mol Biol 284(1):101–124

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Proc Natl Acad Sci U S A 105(31):10949–10954

    Article  PubMed  CAS  Google Scholar 

  • Takami H, Noguchi H, Takaki Y, Uchiyama I, Toyoda A, Nishi S, Chee GJ, Arai W, Nunoura T, Itoh T, Hattori M, Takai K (2012) PLoS One 7(1):e30559

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto K, Higashi N, Nishioka M, Ishikawa K, Taya M (2008) FEBS J 275(6):1140–1149

    Article  PubMed  CAS  Google Scholar 

  • Tanner JJ, Hecht RM, Krause KL (1996) Biochemistry 35(8):2597–2609

    Article  PubMed  CAS  Google Scholar 

  • Taylor IN, Brown RC, Bycroft M, King G, Littlechild JA, Lloyd MC, Praquin C, Toogood HS, Taylor SJ (2004) Biochem Soc Trans 32(Pt 2):290–292

    Article  PubMed  CAS  Google Scholar 

  • Thoma R, Hennig M, Sterner R, Kirschner K (2000) Structure 8(3):265–276

    Article  PubMed  CAS  Google Scholar 

  • Thomas TM, Scopes RK (1998) Biochem J 330(Pt 3):1087–1095

    PubMed  CAS  Google Scholar 

  • Toogood H, Littlechild J (2012) Catal SciTechnol, Submitted

    Google Scholar 

  • Toogood HS, Taylor IN, Brown RC, Taylor SJC, McCague R, Littlechild JA (2002) Biocatal Biotransform 20(4):241–249

    Article  CAS  Google Scholar 

  • Toogood HS, Brown RC, Line K, Keene PA, Taylor SJC, McCague R, Littlechild JA (2004) Tetrahedron 60(3):711–716

    Article  CAS  Google Scholar 

  • Ursby T, Adinolfi BS, Al-Karadaghi S, De Vendittis E, Bocchini V (1999) J Mol Biol 286(1):189–205

    Article  PubMed  CAS  Google Scholar 

  • van Mierlo CPM, Steensma E (2000) J Biotechnol 79(3):281–298

    Article  PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Microbiol Mol Biol Rev 65(1):1–43

    Article  PubMed  CAS  Google Scholar 

  • Vonrhein C, Bonisch H, Schafer G, Schulz GE (1998) J Mol Biol 282(1):167–179

    Article  PubMed  CAS  Google Scholar 

  • Waddell S (2006) Biosciences. Ph.D. University of Exeter, Exeter

    Google Scholar 

  • Wang X, Watanabe T, Shigemori Y, Mikawa T, Okajima T, Mao L, Ohsaka T (2012) Int J Electrochem Sci 7:326–346

    Google Scholar 

  • Watanabe K, Ohkuri T, Yokobori S, Yamagishi A (2006) J Mol Biol 355(4):664–674

    Article  PubMed  CAS  Google Scholar 

  • Willies S, Isupov M, Littlechild J (2010) Environ Technol 31(10):1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Wilquet V, Van de Casteele M (1999) Res Microbiol 150(1):21–32

    Article  PubMed  CAS  Google Scholar 

  • Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW (2009) Appl Environ Microbiol 75(14):4762–4769

    Article  PubMed  CAS  Google Scholar 

  • Yip KS, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V et al (1995) Structure 3(11):1147–1158

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirouzu M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura Y, Kyogoku Y, Miki K, Masui R, Kuramitsu S (2000) Nat Struct Biol 7(Suppl):943–945

    Article  PubMed  CAS  Google Scholar 

  • Yu I, Nagaoka M (2004) Chem Phys Lett 388(4–6):316–321

    Article  CAS  Google Scholar 

  • Zheng Z, Li H, Li L, Shao W (2012) Biotechnol Lett 34(3):541–547

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Sandman K, Lee GE, Reeve JN, Summers MF (1998) Biochemistry 37(30):10573–10580

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Littlechild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Littlechild, J., Novak, H., James, P., Sayer, C. (2013). Mechanisms of Thermal Stability Adopted by Thermophilic Proteins and Their Use in White Biotechnology. In: Satyanarayana, T., Littlechild, J., Kawarabayasi, Y. (eds) Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5899-5_19

Download citation

Publish with us

Policies and ethics