Skip to main content

Modes of Action of Chemical Pollutants

  • Reference work entry
Encyclopedia of Aquatic Ecotoxicology

Glossary

Adverse outcome pathways (AOP):

Conceptual framework that leads from the initiating event of interaction between a toxicant and a receptor in an organism over cellular and organ response to an adverse outcome at organism or population level (Ankley et al. 2010).

Baseline or nonspecific toxicity:

Minimal toxicity that any compound exhibits by partitioning into biological cell membranes, causing nonspecific disturbance of the integrity and functioning of cell membranes.

Biologically effective dose:

The biologically effective dose (BED) or the amount that actually reaches cells, sites, or membranes where adverse effects occur may represent only a fraction of the delivered dose, but it is obviously the best one for predicting adverse effects (cited from Paustenbach DJ 2000, The practice of exposure assessment: A state-of-the-art review. J Toxicol Environ Health B Crit Rev 3:179–291).

Dose (external):

The dose of a toxicant that is external to the organism that can be used to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler NE, Schmitt-Jansen M, Altenburger R (2007) Flow cytometry as a tool to study phytotoxic modes of action. Environ Toxicol Chem 26:297–306

    CAS  Google Scholar 

  • Altenburger R, Nendza M, Schuurmann G (2003) Mixture toxicity and its modeling by quantitative structure- activity relationships. Environ Toxicol Chem 22:1900–1915

    CAS  Google Scholar 

  • Ankley GT, Bencic DC, Breen MS et al (2009) Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action. Aquat Toxicol 92:168–178

    CAS  Google Scholar 

  • Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    CAS  Google Scholar 

  • Ashauer R, Brown CD (2008) Toxicodynamics assumptions in ecotoxicological models. Environ Toxicol Chem 27:1817–1821

    CAS  Google Scholar 

  • Ashauer R, Escher B (2010) Advantages of toxicokinetic and toxicodynamic modelling in aquatic ecotoxicology and risk assessment. J Environ Monitor 12:2056–2061

    CAS  Google Scholar 

  • Borgert CJ, Quill TF, McCarty LS et al (2004) Can mode of action predict mixture toxicity for risk assessment? Toxicol Appl Pharmacol 201:85–96

    CAS  Google Scholar 

  • Bradbury SP (1994) Predicting modes of toxic action from chemical structure. An overview. SAR QSAR Environ Res 2:89–104

    CAS  Google Scholar 

  • Bradbury SP, Russom CL, Ankley GT et al (2003) Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals. Environ Toxicol Chem 22:1789–1798

    CAS  Google Scholar 

  • Cao N, Yang M, Zhang Y et al (2009) Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci Total Environ 407:1588–1597

    CAS  Google Scholar 

  • Collins F, Gray GN, Bucher JR (2008) Transforming environmental health protection. Science 319:906–907

    CAS  Google Scholar 

  • Drummond RA, Russom CL (1990) Behavioral toxicity syndromes – a promising tool for assessing toxicity mechanisms in juvenile fathead minnows. Environ Toxicol Chem 9:37–46

    CAS  Google Scholar 

  • Enoch SJ, Hewitt M, Cronin MTD et al (2008) Classification of chemicals according to mechanism of aquatic toxicity: an evaluation of the implementation of the Verhaar scheme in Toxtree. Chemosphere 73:243–248

    CAS  Google Scholar 

  • Escher BI, Ashauer R, Dyer S et al (2011) Crucial role of mechanisms and modes of toxic action for tissue residues of organic chemicals. Integr Environ Assess Manag 7:28–49

    CAS  Google Scholar 

  • Escher BI, Bramaz N, Eggen RIL et al (2005) In-vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environ Sci Technol 39:3090–3100

    CAS  Google Scholar 

  • Escher BI, Hermens JLM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol 36:4201–4217

    CAS  Google Scholar 

  • Escher B, Leusch F (2011) Bioanalytical tools in water quality assessment. IWA Publishing, London, UK

    Google Scholar 

  • Freidig AP, Hermens JLM (2001) Narcosis and chemical reactivity QSARs for acute fish toxicity. Quant Struct-Act Relatsh 19:547–553

    Google Scholar 

  • Freidig AP, Verhaar HJM, Hermens JLM (1999) Comparing the potency of chemicals with multiple modes of action in aquatic toxicology: acute toxicity due to narcosis versus reactive toxicity of acrylic compounds. Environ Sci Technol 33:3038–3043

    CAS  Google Scholar 

  • Garcia-Reyero N, Poynton HC, Kennedy AJ et al (2009) Biomarker discovery and transcriptomic responses in Daphnia magna exposed to munitions constituents. Environ Sci Technol 43:4188–4193

    CAS  Google Scholar 

  • Grimm V, Ashauer R, Forbes V et al (2009) Cream: a European project on mechanistic effect models for ecological risk assessment of chemicals. Environ Sci Poll Res 16:614–617

    Google Scholar 

  • Hermens JLM (1989) Quantitative structure-activity relationships of environmental pollutants. In: Hutzinger J (ed) The handbook of environmental chemistry, reaction and processes, vol 2E. Springer, Berlin, pp 111–162

    Google Scholar 

  • Iwaiashi H, Kishi K, Kitagawa E et al (2009) Evaluation of the physiology of Medaka as a model animal for standardized toxicity tests of chemicals by using MRNA expression profiling. Environ Sci Technol 43:3913–3918

    Google Scholar 

  • Jackel H, Nendza M (1994) Reactive substructures in the prediction of aquatic toxicity data. Aquat Toxicol 29:305–314

    Google Scholar 

  • Jager T, Kooijman S (2005) Modeling receptor kinetics in the analysis of survival data for organophosphorus pesticides. Environ Sci Technol 39:8307–8314

    CAS  Google Scholar 

  • Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem 48:312–320

    CAS  Google Scholar 

  • Keiter S, Peddinghaus S, Feiler U et al (2010) Dantox-a novel joint research project using zebrafish (Danio rerio) to identify specific toxicity and molecular modes of action of sediment-bound pollutants. J Soils Sediments 10:714–717

    CAS  Google Scholar 

  • Klopman G, Saiakhov R, Rosenkranz HS et al (1999) Multiple computer-automated structure evaluation program study of aquatic toxicity 1: Guppy. Environ Toxicol Chem 18:2497–2505

    CAS  Google Scholar 

  • Kluender C, Sans-Piche F, Riedl J et al (2009) A metabolomics approach to assessing phytotoxic effects on the green alga Scenedesmus vacuolatus. Metabolomics 5:59–71

    CAS  Google Scholar 

  • Könemann H (1981) Quantitative structure-activity relationships in fish toxicity studies. Part 1: relationship for 50 industrial pollutants. Toxicology 19:209–221

    Google Scholar 

  • Kretschmann A, Ashauer R, Hitzfeld K et al (2011a) Mechanistic toxicodynamic model for receptor-mediated toxicity of Diazoxon, the active metabolite of Diazinon, in Daphnia magna. Environ Sci Technol 45:4980–4987

    CAS  Google Scholar 

  • Kretschmann A, Ashauer R, Preuss T et al (2011b) Toxicokinetic model describing bioconcentration and biotransformation of Diazinon in Daphnia magna. Environ Sci Technol 45:4995–5002

    CAS  Google Scholar 

  • Lee JH, Landrum PF, Koh CH (2002) Prediction of time-dependent pah toxicity in Hyalella aztecausing a damage assessment model. Environ Sci Technol 36:3131–3138

    CAS  Google Scholar 

  • Lipnick RL (1991) Outliers: their origin and use in classification of molecular mechanisms of toxicity. Sci Total Environ 109/110:131–153

    Google Scholar 

  • McCarty LS, Borgert CJ (2006) Review of the toxicity of chemical mixtures: theory, policy, and regulatory practice. Regul Toxicol Pharmacol 45:119–143

    CAS  Google Scholar 

  • McKim JM, Bradbury SP, Niemi GJ (1987a) Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ Health Persp 71:171–186

    CAS  Google Scholar 

  • McKim JM, Schmieder PK, Carlson RW et al (1987b) Use of respiratory-cardiovascular responses of rainbow-trout (Salmo gairdneri) in identifying acute toxicity syndromes in fish.1. Pentachlorophenol, 2,4-dinitrophenol, tricaine methanesulfonate and 1-octanol. Environ Toxicol Chem 6:295–312

    CAS  Google Scholar 

  • National Toxicology Program (2004) A national toxicology program for the 21st century: a roadmap for the future. National Institute of Environmental Health Sciences (NIEHS)

    Google Scholar 

  • Nendza M, Muller M (2007) Discriminating toxicant classes by mode of action: 3. Substructure indicators. SAR QSAR Environ Res 18:155–168

    CAS  Google Scholar 

  • Nendza M, Müller M (2000) Discriminating toxicant classes by mode of action: 2. Physico-chemical descriptors. Quant Struct-Act Relatsh 19:581–598

    CAS  Google Scholar 

  • Nendza M, Wenzel A (2006) Discriminating toxicant classes by mode of action: 1. (eco)toxicity profiles. Environ Sci Poll Res 13:192–203

    CAS  Google Scholar 

  • Nendza M, Wenzel A, Wienen G (1995) Classification of contaminants by mode of action based on in vitro assays. SAR QSAR Environ Res 4:39–50

    CAS  Google Scholar 

  • Neuwoehner J, Fenner K, Escher BI (2009) Physiological modes of action of fluoxetine and its human metabolites in algae. Environ Sci Technol 43:6830–6837

    CAS  Google Scholar 

  • Neuwoehner J, Zilberman T, Fenner K et al (2010) Mixture toxicity and QSAR analysis of diuron and its transformation products to assess their mode of toxic action in algae and daphnids. Aquat Toxicol 97:58–67

    CAS  Google Scholar 

  • Preuss TG, Hommen U, Alix A et al (2009) Mechanistic effect models for ecological risk assessment of chemicals (memorisk)-a new setac-Europe advisory group. Environ Sci Poll Res 16:250–252

    Google Scholar 

  • Rand G, Wells P, McCarty LS (1995) Introduction to aquatic toxicology. In: Rand G (ed) Fundamentals of aquatic toxicology, 2nd edn. Taylor & Francis, Washington, DC, pp 3–67

    Google Scholar 

  • Rosenkranz HS, Cunningham AR, Zhang YP (1999) Development, characterization and application of predictive-toxicology models. SAR QSAR Environ Res 10:277–298

    CAS  Google Scholar 

  • Schirmer K, Fischer BB, Madureira DJ et al (2010) Transcriptomics in ecotoxicology. Anal Bioanal Chem 397:917–923

    CAS  Google Scholar 

  • Spycher S, Nendza M, Gasteiger J (2004) Comparison of different classification methods applied to a mode of toxic action data set. QSAR & Comb Sci 23:779–791

    CAS  Google Scholar 

  • Spycher S, Netzeva TI, Worth A et al (2008a) Mode of action-based classification and prediction of activity of uncouplers for the screening of chemical inventories. SAR QSAR Environ Res 19:433–463

    CAS  Google Scholar 

  • Spycher S, Smejtek P, Netzeva TI et al (2008b) Towards a class-independent quantitative structure-activity relationship model for uncouplers of oxidative phosphorylation. Chem Res Toxicol 21:911–927

    CAS  Google Scholar 

  • Swain S, Wren JF, Stuerzenbaum SR et al (2010) Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans. BMC Syst Biol 4:32

    Google Scholar 

  • Van Aggelen G, Ankley GT, Baldwin WS et al (2010) Integrating omic technologies into aquatic ecological risk assessment and environmental monitoring: hurdles, achievements, and future outlook. Environ Health Persp 118:1–5

    Google Scholar 

  • Van Boxtel AL, Kamstra JH, Cenijn PH et al (2008) Microarray analysis reveals a mechanism of phenolic polybrominated diphenylether toxicity in zebrafish. Environ SciTechnol 42:1773–1779

    Google Scholar 

  • Verhaar HJM, Urrestarazu-Ramos E, Hermens JLM (1996) Classifying environmental pollutants. 2: Separation of class 1 (baseline toxicity) and class 2 (“Polar narcosis”) type compounds based on chemical descriptors. J Chemom 10:149–162

    CAS  Google Scholar 

  • Verhaar HJM, van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. 1: structure-activity relationships for prediction of aquatic toxicity. Chemosphere 25:471–491

    CAS  Google Scholar 

  • von der Ohe PC, Kühne R, Ebert R-U et al (2005) Structural alerts- a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. Chem Res Toxicol 18:536–555

    Google Scholar 

  • Watanabe H, Takahashi E, Nakamura Y et al (2007) Development of a daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals. Environ Toxicol Chem 26:669–676

    CAS  Google Scholar 

  • Wenzel A, Nendza M, Hartmann P et al (1997) Test battery for the assessment of aquatic toxicity. Chemosphere 35:307–322

    CAS  Google Scholar 

  • Williams ES, Panko J, Paustenbach DJ (2009) The European Union’s reach regulation: a review of its history and requirements. Crit Rev Toxicol 39:553–575

    Google Scholar 

  • Zhang XW, Newsted JL, Hecker M et al (2009) Classification of chemicals based on concentration-dependent toxicological data using ToxClust. Environ Sci Technol 43:3926–3932

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate I. Escher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Escher, B.I. (2013). Modes of Action of Chemical Pollutants. In: Férard, JF., Blaise, C. (eds) Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5704-2_68

Download citation

Publish with us

Policies and ethics