Skip to main content

Variety Protection and Plant Breeders’ Rights in the ‘DNA Era’

  • Chapter
  • First Online:

Abstract

The development of new crop varieties offers potential benefits, in terms of yield to growers, and in quality improvements to end users. A new variety represents a considerable investment by plant breeders and this can be sustained by commercial returns. A robust system to protect a new variety, and thus the plant breeders’ intellectual property, is part of the infrastructure needed to promote the flow of new varieties. Here we describe current plant variety protection systems and discuss how DNA based markers may be used within those legal and administrative provisions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen R (2006) Realising Farmers’ Rights under the international treaty on plant genetic resources for food and agriculture: summary of findings from the Farmers’ Rights project, phase 1. Fridtjof Nansen Institute, Lysaker. ISBN 82-7613-496-3

    Google Scholar 

  • Biological Innovation for Open Society (BIOS) Tutorial. Can IP rights protect plants? A. Utility Patents. (online) Available at: http://www.patentlens.net/daisy/bios/1234.html. Accessed 18 July 2011

  • Borchert T, Krueger J, Hohe A (2008) Implementation of a model for identifying essentially derived varieties in vegetatively propagated Calluna vulgaris varieties. BMC Genet 9:56. doi:10.1186/1471-2156-9-56

    Article  PubMed  Google Scholar 

  • Bres-Patry C, Lorieux M, Clement G, Bangratz M, Ghesquiere A (2001) Heredity and genetic mapping of domestication-related traits in a temperate japonica weedy rice. Theor Appl Genet 102:118–126

    Article  CAS  Google Scholar 

  • Brooks SA, Yan W, Jackson AK, Deren CW (2008) A natural mutation in rc reverts white-rice-pericarp to red and results in a new, dominant, wild-type allele: Rc-g. Theor Appl Genet 117:575–580. doi:10.1007/s00122-008-0801-8

    Article  PubMed  CAS  Google Scholar 

  • Bruins M (2009) Essentially derived varieties. FleuroSelect: the International Organisation for the Ornamental Plants Industry Leiden, March. (online) Available at: http://www.fleuroselect.com/uploads/2009.03_02.EDV_ISF_Marcel%20Bruins.ppt.pdf. Accessed 18 July 2011

  • Button P (2008) Situation in UPOV concerning the use of molecular techniques in plant variety protection. Presented at symposium on the application of molecular techniques for plant breeding and in plant variety protection, Seoul, Korea

    Google Scholar 

  • Cai HW, Morishima H (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100:840–846

    Article  CAS  Google Scholar 

  • Chen A, Baumann U, Fincher GB, Collins NC (2009) FLT-2 L, a locus in barley controlling flowering time, spike density and plant height. Funct Integr Genomics 9:243–254

    Article  PubMed  CAS  Google Scholar 

  • Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci U S A 101:700–707

    Article  PubMed  CAS  Google Scholar 

  • Close TJ et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. doi:10.1186/1471-2164-10-582

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007a) Control of flowering time in temperate cereals: genes, domestication and sustainable productivity. J Exp Bot 58:1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Cockram J, Chiapparino E, Taylor SA, Stamati K, Donini P, Laurie DA, O’Sullivan DM (2007b) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Cockram J, Mackay IJ, O’Sullivan DM (2007c) The role of double-stranded break repair in the creation of phenotypic diversity at cereal VRN1 loci. Genetics 177:1–5

    Article  Google Scholar 

  • Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16. doi:10.1186/1471-2156-9-16

    Article  PubMed  Google Scholar 

  • Cockram J, Norris C, O’Sullivan DM (2009) PCR-based markers diagnostic for spring and winter seasonal growth habit in barley. Crop Sci 49:403–410

    Article  CAS  Google Scholar 

  • Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D et al (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci U S A 107:21611–21616

    Article  PubMed  CAS  Google Scholar 

  • Cockram J, Jones H, Norris C, O'Sullivan DM (2012) Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.). Theor Appl Genet 125:1735–1749

    Google Scholar 

  • CPV5766 Final Report (2008) Management of winter oilseed rape reference collections. NIAB, Cambridge, CB3 0LE on behalf of Community Plant Variety Office (CPVO), Anger, France

    Google Scholar 

  • Doveri S, Lee D, Maheswaran M, Powell W (2008) Molecular markers – history, features and applications. In: Kole C, Abbott AG (eds) Principles and practices of plant genomics, vol I, Genome mapping, Chapter 2. Science Publishers Inc., Enfield

    Google Scholar 

  • Dubreuil P, Warburton M, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291

    Google Scholar 

  • Dutfield G (2011) Food, biological diversity and intellectual property: the role of the International Union for the Protection of New Varieties of Plants (UPOV). Global Economic Issue Publications: Intellectual Property Issue Paper No. 9, Quaker United Nations Office. Available at www.quno.org/economicissues/food-sustainability/foodLinks.htm#QUNOPUB

  • Eiguchi M, Sano Y (1990) A gene complex responsible for seed shattering and panicle spreading found in common wild rices. Rice Genet Newsl 7:105–107

    Google Scholar 

  • Farmers’ Rights: two approaches to Farmers’ Rights. Resource pages for decision-makers and practitioners. (online) Available at: http://www.farmersrights.org/about/fr_contents_1.html. Accessed 18 Jul 2011

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS-T-like family in barley (Hordeum vulgare). Genetics 176:599–609

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  PubMed  CAS  Google Scholar 

  • Fukuta Y, Yagi T (1998) Mapping of a shattering resistance gene in a mutant line SR-5 induced from an indica rice variety, Nan-jing11. Breed Sci 48:345–348

    CAS  Google Scholar 

  • Gunjaca J, Buhinicek I, Jukic M, Sarcevic H, Vragolovic A, Kozic Z, Jambrovic A, Pejic I (2008) Discriminating maize inbred lines using molecular and DUS data. Euphytica 161:165–172

    Article  CAS  Google Scholar 

  • Heckenberger M, van der Voort JR, Peleman J, Bohn M (2003) Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties: II. Genetic and technical sources of variation in AFLP data and comparison with SSR data. Mol Breed 12:97–106. doi:10.1023/A:1026040007166

    Article  CAS  Google Scholar 

  • Heckenberger M, Bohn M, Frisch M, Maurer HP, Melchinger AE (2005) Identification of essentially derived varieties with molecular markers: an approach based on statistical test theory and computer simulations. Theor Appl Genet 111:598–608. doi:10.1007/s00122-005-2052-2

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Google Scholar 

  • Ibáñez J, Vélez MD, de Andrés MT, Borrego J (2009) Molecular markers for establishing distinctness in vegetatively propagated crops: a case study in grapevine. Theor Appl Genet 119:1213–1222

    Article  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A et al (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    Article  CAS  Google Scholar 

  • Jones H, Jarman RJ, Austin L, White J, Cooke RJ (2003) The management of variety reference collections in distinctness, uniformity and stability testing of wheat. Euphytica 132:175–184

    Article  Google Scholar 

  • Jones H, Bernole A, Jensen LB, Horsnell RA, Law JR, Cooke RJ, Norris CE (2008a) Minimising inter-laboratory variation when constructing a unified molecular database of plant varieties in an allogamous crop. Theor Appl Genet 117:1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008b) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the fertile crescent. Mol Biol Evol 25:2211–2219

    Article  PubMed  CAS  Google Scholar 

  • Jones H, Norris C, Smith D, Cockram J, Lee D, O'Sullivan DM, Mackay I (2012) Evaluation of the use of high-density SNP genotyping to implement UPOV Model 2 for DUS testing in barley. Theor Appl Genet. doi:10.1007/s00122-012-2024-2

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Karsai I, Szűcs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedö Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative X winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A 104:1424–1429

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter X spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    Article  PubMed  CAS  Google Scholar 

  • Law JR, Donini P, Koebner RMD, Reeves JC, Cooke RJ (1998) DNA profiling and plant variety registration. III: The statistical assessment of distinctness in wheat using amplified fragment length polymorphisms. Euphytica 102:335–342

    Article  CAS  Google Scholar 

  • LeDuc C, Miller P, Lichter J, Parry P (1995) Batched analysis of genotypes. PCR Methods Appl 4:331–336

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Reeves JC, Cooke RJ (1996) DNA profiling and plant variety registration: 1. The use of random amplified polymorphisms to discriminate between varieties of oilseed rape. Electrophoresis 17:261–265

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Lupotto E, Powell W (2009) G-string slippage turns white rice red. Genome 52:490–493

    Article  PubMed  CAS  Google Scholar 

  • Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359–366. doi:10.1023/A:1025778227751

    Article  CAS  Google Scholar 

  • Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newslett 26:22–516

    Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  PubMed  CAS  Google Scholar 

  • Nagao S, Takahashi M (1963) Trial construction of twelve linkage groups in Japanese rice. J Fac Agric Hokkaido Univ 53:72–130

    Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S et al (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci U S A 107:490–495

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12:443–451

    Article  PubMed  CAS  Google Scholar 

  • Noli E, Teriaca MS, Sanguineti MC, Conti S (2008) Utilization of SSR and AFLP markers for the assessment of distinctness in durum wheat. Mol Breed 22:301–313

    Article  CAS  Google Scholar 

  • Oba S, Kikuchi F, Maruyama K (1990) Genetic analysis of semidwarfness and grain shattering of Chinese rice (Oryza sativa) variety “Ai-Jio-Nan-Te”. Jpn J Breed 40:13–20

    Google Scholar 

  • Reid A, Hof L, Felix G, Rücker B, Tams S, Milczynska E, Esselink D, Uenk G, Vosman B, Weitz A (2011) Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU common catalogue. Euphytica. doi:10.1007/s10681-011-0462-6

  • Rogers YH, Craig Venter JC (2005) Massively parallel sequencing. Nature 437:326–327

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  PubMed  CAS  Google Scholar 

  • Salazar R, Louwaars NP, Visser B (2006) On protecting farmers’ new varieties: new approaches to rights on collective innovations in plant genetic resources. CGIAR system wide program on collective action and property rights working paper 45. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Smulders MJM, Esselink D, Voorrips RE, Vosman B (2009) Analysis of a database of DNA profiles of 734 hybrid tea rose varieties. Acta Hort (ISHS) 836:169–175, http://www.actahort.org/books/836/836_24.htm

    Google Scholar 

  • Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: Rc encodes a basic helix–loop–helix protein conditioning red pericarp in rice. Plant Cell 18:283–294. doi:10.1105/tpc.105.038430

    Article  PubMed  CAS  Google Scholar 

  • Sweeney MT, Thomson MJ, Cho YG, Park YJ, Williamson SH, Bustamante CD, McCouch SR (2007) Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet 3:e133. doi:10.1371/journal.pgen.0030133

    Article  PubMed  Google Scholar 

  • Szűcs P, Skinner JS, Karsai I, Cuesta-Marcos A, Haggard KG, Corey AE, Chen THH, Hayes PM (2007) Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Mol Genet Genomics 277:249–261

    Article  PubMed  Google Scholar 

  • Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci U S A 105:4062–4067

    Article  PubMed  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME et al (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Stevens NM, Buckler ES IV (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci U S A 106:9979–9986

    Article  PubMed  CAS  Google Scholar 

  • Tommasini L, Batley J, Arnold GM, Cooke RJ, Donini P, Lee D, Law JR, Lowe C, Moule C, Trick M, Edwards KJ (2003) The development of multiplex simple sequence repeats (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet 106:1091–1101

    PubMed  CAS  Google Scholar 

  • Tripp R, Louwaars N, Eaton D (2007) Plant variety protection in developing countries. A report from the field. Food Policy 32:354–371

    Article  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Turuspekov Y, Mano Y, Honda I, Kawada N, Watanabe Y, Komatsuda T (2004) Identification and mapping of cleistogamy genes in barley. Theor Appl Genet 109:480–487

    Article  PubMed  CAS  Google Scholar 

  • Ubisch G (1916) Beitrag zu einer Faktorenanalyse von Gerste. Z Indukt Abs Ver 17:120–152

    Google Scholar 

  • UPOV (1991) International convention for the protection of new varieties of plants. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/upovlex/en/conventions/1991/act1991.html. Accessed 8 Aug 2012

  • UPOV (2002) TG/1/3 General introduction to the examination of distinctness, uniformity and stability and the development of harmonized descriptions of new varieties of plants. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/en/publications/tg-rom/tg001/tg_1_3.pdf, http://www.upov.int/upovlex/en/conventions/1991/act1991.html. Accessed 8 Aug 2012

  • UPOV (2008a) TGP/4: constitution and maintenance of variety collections. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/export/sites/upov/en/publications/tgp/documents/tgp_4_1.pdf. Accessed 19 July 2011

  • UPOV (2008b) TGP/9: examining distinctness. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/export/sites/upov/en/publications/tgp/documents/tgp_4_1.pdf. Accessed 8 Aug 2012

  • UPOV (2010 a) TGP/7/2. Development of test guidelines. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/export/sites/upov/en/publications/tgp/documents/tgp_7_2.pdf. Accessed 19 July 2012

  • UPOV (2010 b) TGP/8. Trial design and techniques used in the examination of distinctness, uniformity and stability. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/export/sites/upov/en/publications/tgp/documents/tgp_8_1.pdf. Accessed 28 July 2011

  • UPOV (2010c) INF/17/1: Guidelines for DNA-profiling: molecular marker selection and database construction (“BMT Guidelines”). International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/export/sites/upov/en/publications/pdf/upov_inf_17_1.pdf. Accessed 19 July 2011

  • UPOV (2011a) Mission statement. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://upov.int/about/en/index.html. Accessed 19 July 2012

  • UPOV (2011b) About UPOV. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/about/en/overview.html. Accessed 8 Aug 2012

  • UPOV (2011c) Test guidelines. International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/en/publications/tg_rom/. Accessed 8 Aug 2012

  • UPOV (2011d) INF/18/1 Possible use of molecular markers in the examination of distinctness, uniformity and stability (DUS). International Union for the Protection of New Varieties of Plants, Geneva. (online) Available at: http://www.upov.int/edocs/infdocs/en/upov_inf_18_1.pdf. Accessed 8 Aug 2012

  • von Zitzewitz J, Szűcs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen THH, Hayes P, Skinner J (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vosman B, Barendrecht J, Esselink D, Jones H, Scott E, Spellerberg B, Tams S (2006) A European reference collection of rose varieties. Plant Research International B.V., Wageningen, The Netherlands. On behalf of Community Plant Variety Office (CPVO), Anger, France. Available at: http://www.cpvo.europa.eu/documents/techreports/RD_rose_project_final_report.pdf. Accessed 19 July 2011

  • Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447;7145:661–678

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1992) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  Google Scholar 

  • World Trade Organization (1994) Agreement on trade-related aspects of intellectual property rights. (online) Available at: http://www.wto.org/english/tratop_e/trips_e/t_agm0_e.htm. Accessed 18 July 2011

  • Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang Q (1999) Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. Rufipogon. Theor Appl Genet 98:243–251

    Article  CAS  Google Scholar 

  • Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, San-Miguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Robert Cooke and Dr John Law for guidance over many years, and Dr Lydia Smith for useful comments. Thanks to FERA (formerly MAFF, DEFRA) and the CPVO for financial support of NIAB research into innovation in DUS testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huw Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jones, H., Norris, C., Cockram, J., Lee, D. (2013). Variety Protection and Plant Breeders’ Rights in the ‘DNA Era’. In: Lübberstedt, T., Varshney, R. (eds) Diagnostics in Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5687-8_18

Download citation

Publish with us

Policies and ethics