Skip to main content

Yield and Growth Responses of Autochthonous Pearl Millet Ecotype (Pennisetum glaucum (L.) R. Br.) Under Saline Water Irrigation in Tunisia

  • Chapter
  • First Online:
Developments in Soil Salinity Assessment and Reclamation

Abstract

Saline water use is one way of water saving in water-scarce regions. It allows preserving drinking water for other uses. In Tunisia, pearl millet (Pennisetum glaucum (L.) R. Br.) is mainly cultivated under irrigation in the arid and saline areas. Therefore, it is essential to make selection of salt-tolerant genotypes. It offers a scope for understanding the traits related to tolerance and to integrate these tolerant crop species/genotypes into appropriate management programmes to improve the productivity of the saline soils. Identifying autochthonous ecotypes growing under local agricultural conditions with significant levels of beneficial factors may promote the value-added cultivation and enhance the agricultural economy. The objective of this study was to identify morphological and physiological traits for salinity tolerance in Tunisian autochthonous ZZ pearl millet ecotype under local conditions. The ability of this ecotype to cope with severe salt stress is the combined characteristic of many plant features, both morphological and physiological. These mechanisms enable ZZ pearl millet ecotype to store the large amounts of salt in the leaves while maintaining high leaf water content and without a grave consequent on panicle yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Hakimi A, Monneveux P, Galiba G (1995) Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC from Triticum polonicum into Triticum durum. J Genet Breed 49:237–244

    CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  CAS  Google Scholar 

  • Ashraf M, McNeilly TM (1987) Salinity effects on five cultivars/lines of pearl millet (Pennisetum americanum [L.] Leeke). Plant Soil 103:13–19

    Article  CAS  Google Scholar 

  • Ashraf M, McNeilly TM (1992) The potential for exploiting variation in salinity tolerance in pearl millet (Pennisetum americanum [L.] Leeke). Plant Breed 104:234–240

    Article  Google Scholar 

  • Baisakh N, Prasanta KS, Varadwaj P (2008) Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct Integr Genomics 8:287–300

    Article  CAS  Google Scholar 

  • Benes SE, Aragues R, Grattan SR, Austin RB (1996) Foliar and root absorption of Na and Cl in maize and barley: implications for salt tolerance screening and the use of saline sprinkler irrigation. Plant Soil 180:75–84

    Article  CAS  Google Scholar 

  • Blummel M, Zerbini E, Reddy BVS, Hash CT, Bidinger F, Khan AA (2003) Improving the production and utilization of sorghum and pearl millet as livestock feed: progress towards dual-purpose genotypes. Field Crops Res 84:143–158

    Article  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12(4):431–434

    Article  CAS  Google Scholar 

  • Busch DS (1995) Calcium regulation in plant cell and its role in signalling. Annu Rev Plant Physiol 46:95–102

    Article  Google Scholar 

  • Chen S, Li J, Wang S, Huttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees-Struct Funct 15:186–194

    Article  CAS  Google Scholar 

  • Cherian S, Reddy MP, Pandya JB (1999) Studies on salt tolerance in Avicennia marina (Forstk) Vierh: effect of NaCl salinity on growth, ion accumulation and enzyme activity. Indian J Plant Physiol 4:266–270

    CAS  Google Scholar 

  • Chopra N, Chopra N (1993) Relative salt tolerance of pearl millet (Pennisetum glaucum) varieties in Marwar tract of Rajasthan. Indian J Agric Res 63:652–654

    Google Scholar 

  • Cramer GR (1992) Kinetics of maize leaf elongation. II. Responses of a Na+-excluding cultivar and a Na+ including cultivar to varying Na/Ca salinities. J Exp Bot 43:857–864

    Article  Google Scholar 

  • Cramer GR, Läuchli A, Politic VS (1985) Displacement of calcium by sodium from the plasmalemma of root cells: primary response to salt stress. Plant Physiol 79:207–211

    Article  CAS  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  CAS  Google Scholar 

  • Dua RP (1989) Salinity tolerance in pearl millet. Indian J Agric Res 23:9–14

    Google Scholar 

  • Ehret DL, RemannHarvey BL, Cipywnyk A (1990) Salinity-induced calcium deficiencies in wheat and barley. Plant Soil 128:143–151

    Article  CAS  Google Scholar 

  • Eleuch L, Slim-Amara H, Daaloul A (2004) Comportement variétal de 2 génotypes d’orge d’origine maghrébine cultivés sur milieu salin. Revue de l’Institut des Régions Arides 200–209

    Google Scholar 

  • Fageria NK, Baligar VC (1999) Growth and nutrient concentrations of common bean, lowland rice, corn, soybean, and wheat at different soil pH on an inceptisol. J Plant Nutr 22(9):1495–1507

    Article  CAS  Google Scholar 

  • FAO (2003) La production et la surface du mil dans certains pays et dans le monde. Rome 57(177):10

    Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed barley: a study at the cell level. Plant Physiol 129:374–388

    Article  CAS  Google Scholar 

  • Gratten SR, Grieve CM (1999) Salinity mineral nutrient relation in horticultural crops. Sci Hortic 78:127–157

    Article  Google Scholar 

  • Gulati A, Jaiwal PK (1992) Comparative salt responses of callus cultures of Vigna radiata (L.) wilczek to various osmotic and ionic stresses. J Plant Physiol 141:120–124

    Article  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA (2003) Salt tolerance of a coastal salt marsh grass. Commun Soil Sci Plant Anal 34:2595–2605

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hensen IE (1982) Osmotic adjustment to water stress in pear millet (Pennisetum americanum (L.) Leake) in a controlled environment. J Exp Bot 33(132):78–87

    Article  Google Scholar 

  • Hu Y, Fricke W, Schmidhalter U (2005) Salinity and the growth of non halophytic grass leaves: the role of mineral nutrient distribution. Funct Plant Biol 32:973–985

    Article  CAS  Google Scholar 

  • Hu Y, Burucs Z, Von Tucher B, Schmidhalter U (2007) Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environ Exp Bot 60:268–275

    Article  CAS  Google Scholar 

  • Hussain K, Ashraf M, Ashraf MY (2008) Relationship between growth and ion relation in pearl millet (Pennisetum glaucum (L.) R. Br.) at different growth stages under salt stress. Afr J Plant Sci 2(3):23–27

    Google Scholar 

  • Isla R, Aragüés R (2010) Yield and plant ion concentrations in maize (Zea mays L.) subject to diurnal and nocturnal saline sprinkler irrigations. Field Crops Res 116(1–3):175–183

    Article  Google Scholar 

  • Jimenez JS, Debouck DG, Lynch JP (2003) Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions. Field Crop Res 80:207–222

    Article  Google Scholar 

  • Karanlýk S (2001) Resistance to salinity in different wheat genotypes and physiological mechanisms involved in salt resistance. PhD thesis, Cukurova Uni Fen Bil Enst, Adana (in Turkish), p 122

    Google Scholar 

  • Katerji N, Bethenod O (1997) Comparaison du comportement hydrique et de la capacité photosynthétique du maïs et du tournesol en conditions de contrainte hydrique. Conclusions sur l’efficience de l’eau. Agronomie 17:17–24

    Article  Google Scholar 

  • Katerji N, Mastrorilli M, Van Hoorn JW, Lahmer FZ, Hamdy A, Oweis T (2009) Durum wheat and barley productivity in saline-drought environments. Eur J Agron 31(1):1–9

    Article  Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56(2):136–146

    Article  CAS  Google Scholar 

  • Koyro HW, Huchzermeyer B, Harrouni MC (2001) Comparison of strategies of halophytes from different plant families to avoid salt injury. In: Horst WJ et al (eds) Food security and sustainability of agroecosystems through basic and applied research. XIV International Plant Nutrition Colloquium, Hannover, Germany, pp 414–415

    Google Scholar 

  • Krishnamurthy L, Serraj R, Rai KN, Hash CT, Dakheel AJ (2007) Identification of pearl millet [Pennisetum glaucum (L.) R. Br.] lines tolerant to soil salinity. Euphytica 158:179–188

    Article  Google Scholar 

  • Kusvuran S, Yasar F, Ellialtioglu S, Abak K (2007) Utilizing some of screening methods in order to determine tolerance of salt stress in the melon (Cucumis melo L.). Res J Agric Biol Sci 3:40–45

    CAS  Google Scholar 

  • Liu W, Schachtman DP, Zhang W (2000) Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance. J Biol Chem 275:27924–27932

    CAS  Google Scholar 

  • López PU, Robredo A, Lacuesta M, Muñoz-Rueda A, Mena-Petite A (2010) Atmospheric CO2 concentration influences the contribution of osmolyte accumulation and cell wall elasticity to salt tolerance in barley cultivars. J Plant Physiol 167(1):15–22

    Article  Google Scholar 

  • Lu CM, Qiu NW, Lu QT, Wangand BS, Kuang TY (2002) Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Sci 163:1063–1068

    Article  CAS  Google Scholar 

  • Manchanda G, Neera G (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Mass EV, Hoffman GJ (1977) Crop salt tolerance and current assessment. J Drain Div Am Soc Civil Eng 103:115–134

    Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48(1):16–20

    Article  CAS  Google Scholar 

  • Meloni DA, Gulotta MR, Martinez CA, Oliva MA (2004) The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz J Plant Physiol 16(1):39–46

    Article  CAS  Google Scholar 

  • Muhling KH, Lauchli A (2002) Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. J Plant Physiol 159:137–146

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Munns R, Guo J, Passioura JB, Cramer GR (2000) Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Aust J Plant Physiol 27:949–5790

    Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  Google Scholar 

  • Muscolo A, Panuccio MR, Sidari M (2003) Effects of salinity on growth, carbohydrate metabolism and nutritive properties of kikuyu grass (Pennisetum clandestinum Hochst). Plant Sci 104:1103–1110

    Article  Google Scholar 

  • Neumann PM, Van Volkenburgn E, Cleland RE (1988) Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility. Plant Physiol 85:233–237

    Article  Google Scholar 

  • Neves-Piestun BG, Bernstein N (2005) Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize. Funct Plant Biol 32:141–152

    Article  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawaand PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    CAS  Google Scholar 

  • Nonami H, Tanimoto K, Tabuchi A, Fukwjama T, Hashimoto Y (1995) Salt stress under hydroponic conditions causes changes in cell wall extension during growth. Acta Hortic 396:91–98

    Google Scholar 

  • Oron G, DeMalach GL, David I, Lurie S (2002) Effect of water salinity and irrigation technology on yield and quality of pears. Biosys Eng 81:237–247

    Article  Google Scholar 

  • Ozalp VC, Oktem A, Saqlan Naqvi SM, Yücel M (2002) Photosystem II and cellular membrane stability evaluation in hexaploid wheat seedlings under salt stress conditions. J Plant Nutr 23(2):275–283

    Article  Google Scholar 

  • Paranychianakis NV, Chartzoulakis KS (2005) Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agric Ecosyst Environ 106:171–187

    Article  CAS  Google Scholar 

  • Parida AK, Das AD (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  Google Scholar 

  • Passioura JB, Munns R (2000) Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Aust J Plant Physiol 27:941–948

    Google Scholar 

  • Perez-Alfocea F, Balibera ME, Alarcon JJ, Bolarin MC (2000) Composition of xylem and phloem exudates in relation to the salt – tolerance of domestic and wild tomato species. J Plant Physiol 156:367–374

    Article  CAS  Google Scholar 

  • Plaut Z, Meinzer FC, Federman E (2000) Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant Soil 218(1–2):59–69

    Article  CAS  Google Scholar 

  • Prior LD, Grieve AM, Slavish PG, Gullis PR (1992) Sodium chloride and soil texture interactions in irrigated field grown Sultana grapevines. II. Plant mineral content, growth and physiology. Aust J Agric Res 43:1067–1084

    Article  CAS  Google Scholar 

  • Qadir M, Schubert S, Noble AD, Saqib M, Saifullah M (2006) Amelioration strategies for salinity-induced land degradation. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 1(69):1–12

    Google Scholar 

  • Radhouane L (2008) Effet du stress salin sur la germination, la croissance et la production en grains chez quelques écotypes de mil (Pennisetum glaucum L. R. Br.) autochtones de Tunisie. CR Biol 331(4):278–286

    Article  CAS  Google Scholar 

  • Sahraoui I, Zid E (2003) Réponses différentielles des feuilles de betterave rouge (Beta vulgaris L.) à la contrainte saline. Les XIII Journées Nationales de Biologie de la SSNT 2003. L’essor des bioressources Djerba, le 16-19 Mars 2003, pp 110–111

    Google Scholar 

  • Saqib M, Akhtar J, Qureshi RH (2004) Pot study on wheat growth in saline and waterlogged compacted soil: I grain yield and yield components. Soil Till Res 77:169–177

    Article  Google Scholar 

  • Saqib M, Akhtar J, Qureshi RH (2005) Na exclusion and salt resistance of wheat (Triticum aestivum) in saline-waterlogged conditions improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Sci 169:125–130

    Article  CAS  Google Scholar 

  • Scholander PF, Humme HT, Bradstreet ED, Hennigsen A (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  Google Scholar 

  • Shannon MC (1984) Breeding, selection and the genetics of salt tolerance. In: Staples RC, Toeniessen GH (eds) Salinity tolerance in plants. Wiley, New York, pp 231–254

    Google Scholar 

  • Smekens MJ, Tienderen PH (2001) Genetic variation and plasticity of Plantago coronopus under saline conditions. Acta Oecol 22:187–200

    Article  Google Scholar 

  • Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot 68:15–28

    Article  CAS  Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic, New York, p 420

    Google Scholar 

  • Wang Z, Li P, Fredricksen M, Gong Z, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, Zhao Y, Zhang H (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–614

    Article  CAS  Google Scholar 

  • Yang YW, Newton RJ, Miller FR (1990) Salinity tolerance in sorghum. Crop Sci 30:775–781

    Article  CAS  Google Scholar 

  • Zeng L, Shannon MC, Grieve CM (2002) Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica 127:235–245

    Article  CAS  Google Scholar 

  • Zhang HX, Blumward E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 9:765–768

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance trends. Plant Sci 6:66–72

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Radhouane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Radhouane, L. (2013). Yield and Growth Responses of Autochthonous Pearl Millet Ecotype (Pennisetum glaucum (L.) R. Br.) Under Saline Water Irrigation in Tunisia. In: Shahid, S., Abdelfattah, M., Taha, F. (eds) Developments in Soil Salinity Assessment and Reclamation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5684-7_30

Download citation

Publish with us

Policies and ethics