Skip to main content

Spinal Cord Injury: Tissue Engineering Using Neural Stem Cells

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 10

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 10))

  • 1425 Accesses

Abstract

Spinal cord injuries result in catastrophic dysfunctions that impair the quality of a patient’s life. Following spinal cord injury (SCI), the cascade of cellular and biochemical reactions during primary and secondary injuries and a dense scar formation leads to a devastating physical and chemical barrier at the lesion site. These effects could not be reversed through conventional treatments. A multidisciplinary approach that includes materials science, engineering, biology, chemistry, and medicine is required to achieve a completely successful treatment for SCI. Tissue engineering, which integrates scaffolds, autologous (preferably) cells, and growth factors, is an encouraging development in the treatment of SCI which aims to replace and restore the anatomical and functional structure of the damaged spinal cord. Neural stem cells (NSCs), by differentiating into the cells of the nervous system, are a promising cell source for use in this challenging approach which has a great potential in the therapy of spinal cord injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderberg L, Aldskogius H, Holtz A (2007) Spinal cord injury – Scientific challenges for the unknown future. Ups J Med Sci 112:259–288

    Article  PubMed  Google Scholar 

  • Blesch A, Tuszynski MH (2003) Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelination. J Comp Neurol 467:403–417

    Article  PubMed  CAS  Google Scholar 

  • Blesch A, Yang H, Weidner N, Hoang A, Otero D (2004) Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci 27:190–201

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Hu YR, Wan H, Xia L, Li JH, Yang F, Qu X, Wang SG, Wang ZC (2010) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells and Schwann cells. Chin Med J (Engl) 123:2424–2431

    CAS  Google Scholar 

  • Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW (1990) Topographical control of cell behaviour: II. Multiple grooved substrata. Development 108:635–644

    PubMed  CAS  Google Scholar 

  • Cui YF, Xu JC, Hargus G, Jakovcevski I, Schachner M (2011) Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery after spinal cord injury in mice. PLoS One 6:e17126

    Article  PubMed  CAS  Google Scholar 

  • David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933

    Article  PubMed  CAS  Google Scholar 

  • Fu SL, Ma ZW, Yin L, Iannotti C, Lu PH, Xu XM (2005) Region-specific growth properties and trophic requirements of brain- and spinal cord-derived rat embryonic neural precursor cells. Neuroscience 135:851–862

    Article  PubMed  CAS  Google Scholar 

  • Hackett JM, Dang TNT, Tsai EC, Cao X (2010) Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation. Materials 3:3714–3728

    Article  CAS  Google Scholar 

  • Hatami M, Mehrjardi NZ, Kiani S, Hemmesi K, Azizi H, Shahverdi A, Baharvand H (2009) Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy 11:618–630

    Article  PubMed  CAS  Google Scholar 

  • Hu SL, Luo HS, Li JT, Xia YZ, Li L, Zhang LJ, Meng H, Cui GY, Chen Z, Wu N, Lin JK, Zhu G, Feng H (2010) Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit Care Med 38:2181–2189

    Article  PubMed  Google Scholar 

  • Hwang DH, Kim HM, Kang YM, Joo IS, Cho CS, Yoon BW, Kim SU, Kim BG (2011) Combination of multifaceted strategies to maximize the thera­peutic benefits of neural stem cell transplantation for spinal cord repair. Cell Transplant 20:1361–1379

    Article  PubMed  Google Scholar 

  • Johnson PJ, Tatara A, Shiu A, Sakiyama-Elbert SE (2010) Controlled release of neurotrophin-3 and platelet derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant 19:89–101

    Article  PubMed  Google Scholar 

  • Kim BG, Kang YM, Phi JH, Kim YH, Hwang DH, Choi JY, Ryu S, Elastal AE, Paek SH, Wang KC, Lee SH, Kim SU, Yoon BW (2010) Implantation of polymer scaffolds seeded with neural stem cells in a canine spinal cord injury model. Cytotherapy 12:841–845

    Article  PubMed  CAS  Google Scholar 

  • Koshizuka S, Okada S, Okawa A, Koda M, Murasawa M, Hashimoto M, Kamada T, Yoshinaga K, Murakami M, Moriya H, Yamazaki M (2004) Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. J Neuropathol Exp Neurol 63:64–72

    PubMed  Google Scholar 

  • Legos JJ, Gopez JJ, Young WF (2002) Non-surgical management of spinal cord injury. Expert Opin Investig Drugs 11:469–482

    Article  PubMed  CAS  Google Scholar 

  • Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA 100:12741–12746

    Article  PubMed  CAS  Google Scholar 

  • Lundberg C, Bjorklund A (1996) Host regulation of glial markers in intrastriatal grafts of conditionally immortalized neural stem cell lines. Neuroreport 7:847–852

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Fitzgerald W, Liu QY, O’Shaughnessy TJ, Maric D, Lin HJ, Alkon DL, Barker JL (2004) CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol 190:276–288

    Article  PubMed  CAS  Google Scholar 

  • National Spinal Cord Injury Statistical Center, Birmingham, Alabama, USA (2011) Spinal cord injury: facts and figures at a glance. February 2011. Available at www.spinalcord.uab.edu

  • Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U, Weidner N (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569

    PubMed  CAS  Google Scholar 

  • Recknor JB, Sakaguchi DS, Mallapragada SK (2006) Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 27:4098–4108

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Sigurjonsson OE, Perreault MC, Egeland T, Glover JC (2005) Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. Proc Natl Acad Sci USA 102:5227–5232

    Article  PubMed  CAS  Google Scholar 

  • Snell RS (1992) Neuroanatomy: a review with questions and explanations, 1st edn. Little, Brown and Company, Boston, pp 55–61

    Google Scholar 

  • Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J, Tuszynski MH (2006) Templated agarose scaffolds support linear axonal regeneration. Tissue Eng 12:2777–2787

    Article  PubMed  CAS  Google Scholar 

  • Tarasenko YI, Gao J, Nie L, Johnson KM, Grady JJ, Hulsebosch CE, McAdoo DJ, Wu P (2007) Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 85:47–57

    Article  PubMed  CAS  Google Scholar 

  • Tashiro K, Sephel GC, Weeks B, Sasaki M, Martin GR, Kleinman HK, Yamada Y (1989) A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem 264:16174–16182

    PubMed  CAS  Google Scholar 

  • Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99:3024–3029

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski MH, Grill R, Jones LL, McKay HM, Blesch A (2002) Spontaneous and augmented growth of axons in the primate spinal cord: effects of local injury and nerve growth factor-secreting cell grafts. J Comp Neurol 449:88–101

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Zeng YS, Zeng CG, Du BL, He LM, Quan DP, Zhang W, Wang JM, Wu JL, Li Y, Li J (2009) Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials 30:3711–3722

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi J, Chan JR, Shooter EM (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Natl Acad Sci 101:8774–8779

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  PubMed  CAS  Google Scholar 

  • Yucel D, Kose GT, Hasirci V (2010) Tissue engineered, guided nerve tube consisting of aligned neural stem cells and astrocytes. Biomacromolecules 11:3584–3591

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Zeng YS, Ma YH, Lu LY, Du BL, Zhang W, Li Y, Chan WY (2011) Bone marrow mesenchymal stem cells in a three dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis and reduce cavity formation in experimental spinal cord injury. Cell Transplant 20:1881–1899. doi:10.3727/096368911X566181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Yucel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yucel, D., Kanneci, I.A., Arslantunali, D., Kose, G.T., Hasirci, V. (2013). Spinal Cord Injury: Tissue Engineering Using Neural Stem Cells. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 10. Tumors of the Central Nervous System, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5681-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5681-6_29

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5680-9

  • Online ISBN: 978-94-007-5681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics