Skip to main content

Uni-directional Neuronal Differentiation of Embryonic Stem Cells by the Neural Stem Sphere Method

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 9

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 9))

  • 1349 Accesses

Abstract

Embryonic stem (ES) cells have two characteristics, pluripotency and self-renewal. ES cells can differentiate into all other cell types, including germ cells, indicating that they may be a limitless source of functional cells for stem cell applications. We have formulated a method, the neural stem sphere (NSS) method, to efficiently obtain functional cells from these sources. The NSS method is a simple method of quickly and efficiently generating numerous neural stem cells and neurons from mouse, monkey and human ES cells. Analysis of marker gene expression during the neurogenesis of mouse ES cells induced by the NSS method demonstrated that ES cells uni-directionally differentiate into neurons via epiblasts, neuroectodermal cells and neural stem cells. This process of neuronal differentiation resembles, in part, that of neurogenesis in early embryos, suggesting that the NSS method may provide a potentially powerful tool for elucidating the mechanism underlying the efficient neural differentiation of ES cells and for assessing drugs, chemical compounds and physical stimuli that may cause neurodevelopmental impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Améen C, Strehl R, Björquist P, Lindahl A, Hyllner J, Sartipy P (2008) Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 65:54–80

    Article  PubMed  Google Scholar 

  • Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  PubMed  CAS  Google Scholar 

  • Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  PubMed  CAS  Google Scholar 

  • Buytaert-Hoefen KA, Alvarez E, Freed CR (2004) Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells 22:669–674

    Article  PubMed  CAS  Google Scholar 

  • Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, Jessell TM, Briscoe J (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90:169–180

    Article  PubMed  CAS  Google Scholar 

  • Gardner RL, Beddington RS (1988) Multi-lineage ‘stem’ cells in the mammalian embryo. J Cell Sci Suppl 10:11–27

    PubMed  CAS  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  PubMed  CAS  Google Scholar 

  • Gokhan S, Mehler MF (2001) Basic and clinical neuroscience applications of embryonic stem cells. Anat Rec 265:142–156

    Article  PubMed  CAS  Google Scholar 

  • Guan K, Chang H, Rolletschek A, Wobus AM (2001) Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res 305:171–176

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB (1988) A community effect in animal development. Nature 336:772–774

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, Kamiya D, Honda Y, Sasai N, Yoshimura N, Takahashi M, Sasai Y (2005) Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci USA 102:11331–11336

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Heike T, Okawa K, Haruyama M, Shiraishi K, Yoshimoto M, Nagato M, Shibata M, Kumada T, Yamanaka Y, Hattori H, Nakahata T (2006) A neurosphere-derived factor, cystatin C, supports differentiation of ES cells into neural stem cells. Proc Natl Acad Sci USA 103:6019–6024

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28:31–40

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Adjali O, Galéotti N, Poncet J, Jouin P, Homburger V, Bockaert J, Marin P (2003) Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J Biol Chem 278:24438–24448

    Article  PubMed  CAS  Google Scholar 

  • Loebel DA, Watson CM, De Young RA, Tam PP (2003) Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 264:1–14

    Article  PubMed  CAS  Google Scholar 

  • Morizane A, Takahashi J, Shinoyama M, Ideguchi M, Takagi Y, Fukuda H, Koyanagi M, Sasai Y, Hashimoto N (2006) Generation of graftable dopaminergic neuron progenitors from mouse ES cells by a combination of coculture and neurosphere methods. J Neurosci Res 83:1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu S, Okuno T, Suzuki Y, Nakayama T, Kakiuchi T, Takino N, Iida A, Ono F, Terao K, Inoue N, Nakano I, Kondo Y, Tsukada H (2009) Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cell in a primate model of Parkinson’s disease. Synapse 63:541–548

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Momoki-Soga T, Inoue N (2003) Astrocyte-derived factors instruct differentiation of embryonic stem cells into neurons. Neurosci Res 46:241–249

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Momoki-Soga T, Yamaguchi K, Inoue N (2004) Efficient production of neural stem cells and neurons from embryonic stem cells. Neuroreport 15:487–491

    Article  PubMed  Google Scholar 

  • Nakayama T, Sai T, Otsu M, Momoki-Soga T, Inoue N (2006) Astrocytogenesis of embryonic stem-cell-derived neural stem cells: default differentiation. Neuroreport 17:1519–1523

    Article  PubMed  Google Scholar 

  • O’Shea KS (1999) Embryonic stem cell models of development. Anat Rec 257:32–41

    Article  PubMed  Google Scholar 

  • Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102

    Article  PubMed  CAS  Google Scholar 

  • Okuno T, Nakayama T, Konishi N, Michibata H, Wakimoto K, Suzuki Y, Nito S, Inaba T, Nakano I, Muramatsu S, Takano M, Kondo Y, Inoue N (2009) Self-contained induction of neurons from human embryonic stem cells. PLoS One 4:e6318

    Article  PubMed  Google Scholar 

  • Otsu M, Sai T, Nakayama T, Murakami K, Inoue N (2011) Uni-directional differentiation of mouse embryonic stem cells into neurons by the neural stem sphere method. Neurosci Res 69:314–321

    Article  PubMed  CAS  Google Scholar 

  • Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R (1998) A role for SOX1 in neural determination. Development 125:1967–1978

    PubMed  CAS  Google Scholar 

  • Pfister S, Steiner KA, Tam PP (2007) Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development. Gene Expr Patterns 7:558–573

    Article  PubMed  CAS  Google Scholar 

  • Quinlan GA, Williams EA, Tan SS, Tam PP (1995) Neuroectodermal fate of epiblast cells in the distal region of the mouse egg cylinder: implication for body plan organization during early embryogenesis. Development 121:87–98

    PubMed  CAS  Google Scholar 

  • Smukler SR, Runciman SB, Xu S, van der Kooy D (2006) Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol 172:79–90

    Article  PubMed  CAS  Google Scholar 

  • Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Tam PP (1989) Regionalisation of the mouse embryonic ectoderm: allocation of prospective ectodermal tissues during gastrulation. Development 107:55–67

    PubMed  CAS  Google Scholar 

  • Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30:65–78

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8:288–296

    Article  PubMed  CAS  Google Scholar 

  • Webb SE, Moreau M, Leclerc C, Miller AL (2005) Calcium transients and neural induction in vertebrates. Cell Calcium 37:375–385

    Article  PubMed  CAS  Google Scholar 

  • Wong RC, Pera MF, Pébay A (2008) Role of gap junctions in embryonic and somatic stem cells. Stem Cell Rev 4:283–292

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Otsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Otsu, M., Nakayama, T., Inoue, N. (2013). Uni-directional Neuronal Differentiation of Embryonic Stem Cells by the Neural Stem Sphere Method. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 9. Stem Cells and Cancer Stem Cells, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5645-8_12

Download citation

Publish with us

Policies and ethics