Skip to main content

Structure Solution: Global Optimisation Methods

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

The direct location of atomic positions from electron density maps generated using conventional direct methods solutions is a far more difficult exercise when using powder data as opposed to single crystal data. Global optimisation methods that involve the assessment of trial crystal structures in real space offer a powerful alternative method of structure solution that circumvents the map interpretation stage by directly maximising the agreement between calculated and observed diffraction intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shankland K, David WIF (2002) Global optimisation. In: David WIF, Shankland K, McCusker LB, Baerlocher C (eds) Structure determination from powder diffraction data. Oxford University Press, Oxford

    Google Scholar 

  2. Shankland K, Markvardsen AJ, Rowlatt C, Shankland N, David WIF (2010) A benchmark method for global optimization problems in structure determination from powder diffraction data. J Appl Crystallogr 43:401

    Article  Google Scholar 

  3. David WIF, Shankland K, Shankland N (1998) Routine determination of molecular crystal structures from powder diffraction data. Chem Commun 931

    Article  Google Scholar 

  4. Keen DA (1998) In: Billinge SJL, Thorpe MF (eds) Local structure from diffraction. Plenum Press, New York

    Google Scholar 

  5. Hazelrigg GA (1996) Systems engineering: an approach to information based design. Prentice-Hall International, Upper Saddle River

    Google Scholar 

  6. Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice-Hall, Harlow

    Google Scholar 

  7. Hammond RB, Roberts KJ, Docherty R, Edmondson M (1997) Computationally assisted structure determination for molecular materials from X-ray powder diffraction data. J Phys Chem B 101:6532

    Article  Google Scholar 

  8. Dova E, Goubitz K, Driessen R, Sonneveld E, Chernyshev V, Schenk H (2001) Structure determination of two organometallic complexes from powder data using grid-search techniques. Materials Science Forum 378–371:798

    Google Scholar 

  9. Andreev YG, MacGlashan GS, Bruce PG (1997) Ab initio solution of a complex crystal structure from powder-diffraction data using simulated-annealing method and a high degree of molecular flexibility. Phys Rev B 55:12011

    Article  ADS  Google Scholar 

  10. Engel GE, Wilke S, Konig O, Harris KDM, Leusen FJJ (1999) PowderSolve – a complete package for crystal structure solution from powder diffraction patterns. J Appl Crystallogr 32:1169

    Article  Google Scholar 

  11. Putz H, Schon JC, Jansen M (1999) Combined method for ab initio structure solution from powder diffraction data. J Appl Crystallogr 32:864

    Article  Google Scholar 

  12. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) The structure of malaria pigment beta-haematin. Nature 404:307

    Article  ADS  Google Scholar 

  13. Coelho AA (2001) Whole-profile structure solution from powder diffraction data using simulated annealing. J Appl Crystallogr 33:899

    Article  Google Scholar 

  14. Favre-Nicolin V, Cerny R (2004) FOX: modular approach to crystal structure determination from powder diffraction. Epdic 8:433–4, Trans Tech Publications Ltd.

    Google Scholar 

  15. Griffin TAN, Shankland K, van de Streek J, Cole J (2009) GDASH: a grid-enabled program for structure solution from powder diffraction data. J Appl Crystallogr 42:356

    Article  Google Scholar 

  16. Rohlíček J, Husák M, Favre-Nicolin V (2011) FOX.Grid – a grid computing extension of the Fox program for ab initio structure determination from powder diffraction. http://vincefn.net/Fox/Manual/Fox.Grid

  17. Altomare A, Caliandro R, Giacovazzo C, Moliterni AGG, Rizzi R (2003) Solution of organic crystal structures from powder diffraction by combining simulated annealing and direct methods. J Appl Crystallogr 36:230

    Article  Google Scholar 

  18. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727

    Article  Google Scholar 

  19. Kariuki BM, Serrano-Gonzalez H, Johnston RL, Harris KDM (1997) The application of a genetic algorithm for solving crystal structures from powder diffraction data. Chem Phys Lett 280:189

    Article  ADS  Google Scholar 

  20. Shankland K, David WIF, Csoka T (1997) Crystal structure determination from powder diffraction data by the application of a genetic algorithm. Z Kristall 212:550

    Article  Google Scholar 

  21. Deng XD, Dong C (2011) EPCryst: a computer program for solving crystal structures from powder diffraction data. J Appl Crystalogr 44:230

    Article  Google Scholar 

  22. Chong SY, Tremayne M (2006) Combined optimization using cultural and differential evolution: application to crystal structure solution from powder diffraction data. Chem Commun 4078

    Google Scholar 

  23. Turner GW, Tedesco E, Harris KDM, Johnston RL, Kariuki BM (2000) Implementation of Lamarckian concepts in a Genetic Algorithm for structure solution from powder diffraction data. Chem Phys Lett 321:183

    Article  ADS  Google Scholar 

  24. Johnston JC, David WIF, Markvardsen AJ, Shankland K (2002) A hybrid Monte Carlo method for crystal structure determination from powder diffraction data. Acta Crystallogr A 58:441

    Article  Google Scholar 

  25. David WIF, Shankland K, Van de Streek J, Pidcock E, Motherwell WDS, Cole JC (2006) DASH: a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910

    Article  Google Scholar 

Download references

Acknowledgements

I am extremely grateful to my collaborators Bill David, Tony Csoka, Anders Markvardsen, John Johnston, Gareth Didlick and Chris Rowlatt, all of whom have played crucial roles in helping me explore the global optimisation landscape.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Shankland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Shankland, K. (2012). Structure Solution: Global Optimisation Methods. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5580-2_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5579-6

  • Online ISBN: 978-94-007-5580-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics