Skip to main content

Deformation Mechanisms: Crystal Plasticity

  • Chapter
  • First Online:
Materials Science for Structural Geology

Part of the book series: Springer Geochemistry/Mineralogy ((SPRINGERGEOCHEM))

Abstract

The deformation mechanisms of the greatest importance in the intra granular plastic deformation of crystalline materials are slip and twinning. In these mechanisms, the strain or change of shape is achieved by the relative movement of blocks of atoms rather than by the more or less independent movement of individual atoms that characterizes the atomic transfer mechanisms considered in the previous chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Nagaki S (1981) Finite element modelling of Taylor slips in fcc polycrystals. In: Hansen N, Horsewell A, Leffers T, Lilholt H (eds) Deformation of polycrystals: mechanisms and microstructures, Roskilde, Denmark, Risø National Laboratory, pp 125–130

    Google Scholar 

  • Ahlquist CN, Gasca-Neri R, Nix WD (1970) A phenomenological theory of steady state creep based on average internal and effective stress. Acta Metall 18:663–671

    Article  Google Scholar 

  • Aladag E, Davis LA, Gordon RB (1970) Cross-slip and plastic deformation of NaCl single and polycrystals at high pressure. Phil Mag 21:469–478

    Article  Google Scholar 

  • Alexander H, Haasen P (1968) Dislocations and plastic flow in the diamond structure. Solid State Phys 22:27–158

    Article  Google Scholar 

  • Amelinckx S (1979) Dislocations in particular structures. In: Nabarro FRN (ed) Dislocations in solids. North-Holland Publ. Co., Amsterdam, pp 67–460

    Google Scholar 

  • Ankem S, Margolin H (1982) Finite element method (FEM) calculations of stress-strain behaviour of alpha-beta Ti-Mn alloys: Part I. Stress-straion relations. Part II. Stress and strain distributions. Metall Trans A 13A, 595–601:603–609

    Google Scholar 

  • Ardell AJ (1985) Precipitation hardening. Metall Trans A 16A:2131–2165

    Google Scholar 

  • Ardell AJ, Przystupa MA (1984) Dislocation link-length statistics and elevated temperature deformation of crystals. Mech Materials 3:319–332

    Article  Google Scholar 

  • Armstrong R, Codd I, Douthwaite RM, Petch NJ (1962) Plastic deformation of polycrystalline aggregates. Phil Mag 7:45–58

    Article  Google Scholar 

  • Asaro RJ, Needleman A (1984) Flow localization in strain hardening crystalline solids. Scripta Met 18:429–435

    Article  Google Scholar 

  • Asaro RJ, Needleman A (1985) Texture development and strain hardening in rate dependent polycrystals. Acta Metall 33:923–953

    Article  Google Scholar 

  • Ashby MF (1970) The deformation of plastically non-homogeneous materials. Phil Mag 21:399–424

    Article  Google Scholar 

  • Ashby MF (1971) The deformation of plastically non-homogeneous alloys. In: Kelly A and Nicholson RB (eds) Strengthening methods of crystals. Applied Science Publishers, London, pp 137–192

    Google Scholar 

  • Bailey RW (1926) Note on the softening of strain hardening metals and its relation to creep. J Inst Metals 35:27–43

    Google Scholar 

  • Barrett CS (1943) Structure of Metals. McGraw-Hill, New York, 567 pp

    Google Scholar 

  • Basinski SJ, Basinski ZS (1979) Plastic deformation and work hardening. In: Nabarro FRN (ed) Dislocations in solids. North Holland Publ Co, Amsterdam, pp 261–362

    Google Scholar 

  • Berveiller M, Zaoui A (1978) An extension of the self-consistent scheme to plastically-deforming polycrystals. J Mech Phys Solids 26:325–344

    Article  Google Scholar 

  • Berveiller M, Zaoui A (1981) A simplified self-consistent scheme for the plasticity of two-phase metals. Res Mechanica Lett 1:119–124

    Google Scholar 

  • Berveiller M, Hiki A, Zaoui A (1981) Self-consistent schemes for the plasticity of polycrystalline and multiphase materials. In: Lilholt H (ed) Deformation of polycrystals: mechanisms and microstructures. Risø National Laboratory, Roskilde, Denmark, pp 145–156

    Google Scholar 

  • Bilby BA (1955) Types of dislocation source. In: Report of the conference on defects in crystalline solids held at the H H Wills Physical Laboratory University of Bristol July 1944, London, The Physical Society, pp 124–133

    Google Scholar 

  • Bishop JFW (1953) A theoretical examination of the plastic deformation of crystals by glide. Phil Mag 44:51–64

    Google Scholar 

  • Bishop JFW (1954) A theory of the tensile and compressive textures of face-centred cubic metals. J Mech Phys Solids 3:130–142

    Article  Google Scholar 

  • Bishop JFW, Hill R (1951) A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Phil Mag 42:414–427

    Google Scholar 

  • Blacic JD, Christie JM (1984) Plasticity and hydrolytic weakening of quartz single crystals. J Geophys Res 89:4223–4239

    Article  Google Scholar 

  • Boas W, Hargreaves ME (1948) On the inhomogeneity of plastic deformation in the crystals of an aggregate. Proc Roy Soc (Lon) A193:89–97

    Article  Google Scholar 

  • Borch RS, Green HW (1987) Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle. Nature 330:345–348

    Article  Google Scholar 

  • Brion HG, Haasen P, Siethoff H (1971) The yield point of highly-doped germanium. Acta Metall 19:283–290

    Article  Google Scholar 

  • Brown AM, Ashby MF (1980) On the power-law equation. Scripta Met 14:1297–1302

    Article  Google Scholar 

  • Brown LM, Ham RK (1971) Dislocation-particle interactions. In: Nicholson RB (ed) Strengthening methods in crystals. Elsevier, Amsterdam, pp 12–135

    Google Scholar 

  • Bucher M (1982) Core energy and Peierls stress of edge dislocations on (110) and (001) slip planes in NaCl. Phys Stat Sol B 114:383–392

    Article  Google Scholar 

  • Budianski B, Wu TT (1962) Theoretical prediction of plastic strains of polycrystals. In: Proceedings of 4th national congress of applied mechanics, ASME, pp 1175–1185

    Google Scholar 

  • Bullen FP, Henderson F, Wain HL, Paterson MS (1964) The effect of hydrostatic pressure on brittleness in chromium. Phil Mag 9:803–815

    Article  Google Scholar 

  • Burton B (1982a) The influence of solute drag on dislocation creep. Phil Mag A46:607–616

    Google Scholar 

  • Burton B (1982b) The dislocation network theory of creep. Phil Mag A45:657–675

    Google Scholar 

  • Cahn RW (1949) Recrystallization of single crystals after plastic bending. J Inst Metals 76:121–143

    Google Scholar 

  • Cahn RW (1951) Slip and polygonization in aluminium. J Inst Metals 79:129–158

    Google Scholar 

  • Cahn RW (1953) Soviet work on mechanical twinning. Nuovo Cimento 4(10):350–386

    Google Scholar 

  • Cahn RW (1954) Twinned crystals. Adv Phys 3:363–445

    Article  Google Scholar 

  • Caillard D, Martin JL (1982a) Microstructure of aluminium during creep at intermediate temperatures. I Dislocation networks after creep. Acta metall 30:437–445

    Article  Google Scholar 

  • Caillard D, Martin JL (1982b) Microstructure of aluminium during creep at intermediate temperatures. II In situ study of sub boundary properties. Acta metall 30:791–798

    Article  Google Scholar 

  • Caillard D, Martin JL (1983) Microstructure of aluminium during creep at intermediate temperatures. III The rate-controlling process. Acta metall 31:813–825

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford, 510 pp

    Google Scholar 

  • Carter CB (1984) What’s new in dislocation association. In: Kubin L, Castaing J (eds) Dislocations 1984, Paris, Editions du CNRS, pp 227–251

    Google Scholar 

  • Cherns D (1984) Climb of dissociated dislocations. In: Kubin L, Castaing J (eds) Dislocations 1984, Paris, Editions du CNRS, pp 215–226

    Google Scholar 

  • Chin GY, Mammel WL (1969) Generalization and equivalence of the minimum work (Taylor) and maximum work (Bishop-Hill) principles for crystal plasticity. Trans Met Soc AIME 245:1211–1214

    Google Scholar 

  • Christian JW (1965) The theory of transformations in metals and alloys. Pergamon, Oxford, 973 pp

    Google Scholar 

  • Christie JM, Ardell AJ (1974) Substructures of deformation lamallae in quartz. Geology 2:405–408

    Article  Google Scholar 

  • Clément N, Caillard D, Martin JL (1984) Heterogeneous deformation of concentrated Ni-Cr FCC alloys: macroscopic and microscopic behaviour. Acta Metall 32:961–975

    Article  Google Scholar 

  • Coe RS (1970) The thermodynamic effect of shear stress on the ortho-clino inversion in enstatite and other coherent phase transitions characterized by a finite simple shear. Contr Mineral Petrol 26:247–264

    Article  Google Scholar 

  • Copley SM, Pask JA (1965) Deformation of polycrystalline MgO at elevated temperatures. J Am Ceram Soc 48:636–642

    Article  Google Scholar 

  • Cottrell AH (1953) Dislocations and plastic flow in crystals. Clarendon Press, Oxford, 223 pp

    Google Scholar 

  • Cottrell AH, Bilby BA (1951) A mechanism for the growth of deformation twins in crystals. Phil Mag 42:573–581

    Google Scholar 

  • Cox HL, Sopwith DG (1937) The effect of orientation on stresses in single crystals and of random orientation on strength of polycrystalline aggregates. Proc Phys Soc 49:134–151

    Article  Google Scholar 

  • Dana ES (1932) A textbook of mineralogy, 4th edn. Wiley, New York, 851 pp (revised and enlarged by Ford WF)

    Google Scholar 

  • Di Persio J, Escaig B (1984) Dislocation cores in molecular crystals. In: Kubin L, Castaing J (eds) Dislocations 1984, Paris, Editions du CNRS, pp 267–282

    Google Scholar 

  • Dollar M, Gorczyca S (1981) A new approach to flow stress—grain size relationship. In Lilholt H (ed) Deformation of polycrystals: mechanisms and microstructures, Roskilde, Denmark, Risø National Laboratory, pp 163–172

    Google Scholar 

  • Durand L, Thomas de Montpreville C (1990) Etude du comportement mécanique des matériaux biphasés au moyen de la méthode des eléments finis. Res Mechanica 29:257–285

    Google Scholar 

  • Edmond JM, Paterson MS (1972) Volume changes during the deformation of rocks at high pressures. Int J Rock Mech Min Sci 9:161–182

    Article  Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Molekül-dimensionen. Ann Phys 19:289–306

    Article  Google Scholar 

  • Embury JD (1985) Plastic flow in dispersion hardened materials. Met Trans A 16a:2191–2200

    Article  Google Scholar 

  • Escaig B (1968a) Sur le glissement dévié des dislocations dans la structure cubique à faces centrées. J Physique 29:225–239

    Article  Google Scholar 

  • Escaig B (1968b) L’activation thermique des déviations sous faibles contraintes dans les strutures h.c. et c.c.. Phys Stat Sol 28:463–474

    Google Scholar 

  • Exner HE (1983) Qualitative and quantitative surface microscopy. In: Cahn RW, Hassen P (ed) Physical metallurgy, 3rd edn. North Holland Physics Publ, Amsterdaam, pp 581–647

    Google Scholar 

  • Exner H E, Hougardy HP (eds) (1988) Quantitative image analysis of microstructures. DGM Informations-Gesellschaft Verlag, Oberursel, 235 pp

    Google Scholar 

  • Fantozzi G, Esnouf C, Benoit W, Ritchie IG (1982) Internal friction and microdeformation due to the intrinsic properties of dislocations: the Bordoni relaxation. Prog Mater Sci 27:311–451

    Article  Google Scholar 

  • Fitz Gerald JD, Boland JN, McClaren AC, Ord A, Hobbs BE (1991) Microstructures in water-weakened single crystals of quartz. J Geophys Res 96:2139–2155

    Google Scholar 

  • Frank FC (1951) Capillary equilibria in dislocated crystals. Acta cryst 4:497–501

    Article  Google Scholar 

  • Frank FC (1955) Hexagonal networks of dislocations. In: Report of the conference on defects in crystalline solids held at H H Wills Physical Laboratory University of Bristol July 1954, London, Physical Society, pp 159–168

    Google Scholar 

  • Friedel J (1959) Dislocation interactions and internal strains. In Rassweiler GN, Grube WL (ed) Internal stresses and fatigue in metals. Elsevier, Amsterdam, pp 220–262

    Google Scholar 

  • Friedel J (1964) Dislocations. Pergamon Press, Oxford, 491 pp

    Google Scholar 

  • Friedel J (1982) On the entropy of vibration of dislocations. Phil Mag A 45:271–285

    Article  Google Scholar 

  • Frost HJ, Ashby MF (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon, Oxford, 166 pp

    Google Scholar 

  • Gerold V (1979) Precipitation hardening. In: Nabarro FRN (eds) Dislocations in solids. Vol 4: dislocations in metallurgy. North-Holland Publ Co, Amsterdam, pp 219–260

    Google Scholar 

  • Gibbs GB (1966) Creep and stress relaxation studies with polycrystalline magnesium. Phil Mag 13:317–329

    Article  Google Scholar 

  • Gifkins RC (1974) Hot and strong. J Aus Inst Met 19:149–160

    Google Scholar 

  • Gifkins RC (1978) Grain rearrangements during superplastic deformation. J Mater Sci 13:1926–1936

    Article  Google Scholar 

  • Gil Sevillano SJ, van Houtte P, Aernoudt E (1980) Large strain work hardening and textures. Prog Mater Sci 25:69–412

    Article  Google Scholar 

  • Gilman JJ (1969) Micromechanics of flow in solids. McGraw-Hill, New York, 294 pp

    Google Scholar 

  • Gittus J (1975) Creep, viscoelasticity and creep fracture of solids. Applied Science Publishers, London, 725 pp

    Google Scholar 

  • Granato AV (1984) Viscosity effects in plastic flow and internal friction. Scripta Met 18:663–668

    Article  Google Scholar 

  • Grewen J, Noda T, Sauer D (1977) Electron microscopic investigation of shear bands. Zeit f Metallkunde 68:260–265

    Google Scholar 

  • Griggs DT (1974) A model of hydrolytic weakening in quartz. J Geoph Res 79:1655–1661

    Article  Google Scholar 

  • Griggs DT, Turner FJ, Heard HC (1960) Deformation of rocks at 500–800 °C. In: Griggs DT, Handin J (ed) Rock deformation. Geological Society of America, pp 39–104

    Google Scholar 

  • Groh P, Kubin LP, Martin JL (eds) (1979) Dislocations et Déformation Plastique. Ecole d’été d’Yravals, 3–14 Sept 1979, Les Editions de Physique, 461 pp

    Google Scholar 

  • Gross KA (1965) X-ray line broadening and stored energy in deformed and annealed calcite. Phil Mag 8(12):801–813

    Google Scholar 

  • Groves GW, Kelly A (1963) Independent slip systems in crystals. Phil Mag 8:877–887

    Article  Google Scholar 

  • Groves GW, Kelly A (1969) Change of shape due to dislocation climb. Phil Mag 19:977–986

    Article  Google Scholar 

  • Guillopé M, Poirier J-P (1979) Dynamic recrystallization during creep of single-crystalline halite: an experimental study. J Geophys Res 84:5557–5567

    Article  Google Scholar 

  • Guyot P (1980) “Anomalies” dans le comportement à haute température des alliages à dispersion d’oxyde. Annales de Chimie Fr 5:74–76

    Google Scholar 

  • Guyot P, Dorn JE (1967) A critical review of the Peierls mechanism. Canad J Phys 45:983–1016

    Article  Google Scholar 

  • Haasen P (1964) Versetzungen und Plastizität von Germanium und Silicium. In: Festkörperprobleme vol 3, Deusche Physikalische Gesellschaft, pp 167–208

    Google Scholar 

  • Haasen P (1978) Physical Metallurgy (trans: Mordike J). Cambridge University Press, Cambridge, 381 pp

    Google Scholar 

  • Haasen P (1983) Mechanical properties of solid solutions and intermetallic compounds. In: Cahn RW, Haasen P (ed) Physical metallurgy, 3rd edn. North-Holland Physics Publisher, Amsterdam, pp 1341–1409

    Google Scholar 

  • Haasen P, Schröter W (1970) In: Fundamental aspects of dislocation theory. Nat Bureau of Standards, Washington, pp 1231–1258

    Google Scholar 

  • Hall EO (1951) The deformation and ageing of mild steel: III Discussion of results. Proc Phys Soc B 64:747–753

    Article  Google Scholar 

  • Hall EO (1954) Twinning and diffusionless transformations in metals. Butterworths, London, 181 pp

    Google Scholar 

  • Hansen N (1983) Flow stress and grain size dependence of non-ferrous metals and alloys. In: Baker TN (ed) Yield, flow and fracture of polycrystals. Applied Sci Publ, London, pp 311–350

    Google Scholar 

  • Hansen N (1985) Polycrystalline strengthening. Met Trans A 16A:2167–2190

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    Article  Google Scholar 

  • Hatherly M (1978 The structure of highly deformed materials and the development of deformation textures. In: Proceedings of 5th international conference on textures of materials, Springer, Berlin, pp 81–91

    Google Scholar 

  • Hatherly M, Malin AS (1979) Deformation of copper amd low stacking-fault energy copper-base alloys. Met Technol 6:308–309

    Google Scholar 

  • Heard HC, Kirby SH (1981) Activation volume for steady state creep in polycrystalline CsCl: cesium chloride structure. In: Carter NL, Friedman M, Logan JM, Streams DW (ed) Mechanical behavior of crustal rocks. The Handin volume, Washington, DC, American Geophysical Union, pp 83–91

    Google Scholar 

  • Hecker SS, Stout MG (1984) Strain hardening in heavily cold worked metals. In: Krauss G (ed) Proceedings of the seminar “deformation, processing, and structure” American Society of Metals, Metals Park, Ohio, pp 1–46

    Google Scholar 

  • Heggie M, Jones R (1986) Models of hydrolytic weakening in quartz. Phil Mag A 53:L65–L70

    Article  Google Scholar 

  • Heidenreich RD, Shockley W (1948) Study of slip in aluminium crystals by electron microscope and electron diffraction methods. In: Report of a conference on strength of solids, University of Bristol, 7-9 July, 1947, London, The Physical Society, pp 57–75

    Google Scholar 

  • Heinisch HL, Sines G, Goodman JW, Kirby SH (1975) Elastic stresses and self-energies of dislocations of arbitrary orientation in anisotropic media: olivine, orthopyroxene, calcite, and quartz. J Geoph Res 80:1885–1896

    Article  Google Scholar 

  • Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Article  Google Scholar 

  • Hirsch PB (1960) Proceedings of the 5th International Conference on Crystallography, Cambridge

    Google Scholar 

  • Hirsch PB (1985) Dislocations in semiconductors. In: Loretto MH (ed), Dislocations and properties of real materials. The Institute of Metals, London, pp 333–348

    Google Scholar 

  • Hirth JP (1985) A brief history of dislocation theory. Met Trans A 16A:2085–2090

    Article  Google Scholar 

  • Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, New York, 857 pp

    Google Scholar 

  • Hobbs BE, McLaren AC, Paterson MS (1972) Plasticity of single crystals of synthetic quartz. In: Heard HC, Borg IG, Carter NL, Rayleigh CB (ed) Flow and fracture of rocks. American Geophysical Union, Washington, pp 29–53

    Google Scholar 

  • Hobbs BE, Means WD, Williams P (1976) An outline of structural geology. Wiley, New York, 571 pp

    Google Scholar 

  • Honeycombe RWK, Boas W (1948) Aust J Sci Res A1:70–84

    Google Scholar 

  • Honneff H, Mecking H (1978) A method for the determination of the active slip systems and orientation changes during single crystal deformation. In Proceedings of 5th International Conference on TexMater, Springer, Berlin, pp 265–275

    Google Scholar 

  • Horowitz FG, Tullis TE, Kronenberg A, Tullis J, Needleman A (1981) Finite element model of polyphase flow. EOS Trans AGU 62:396–397

    Google Scholar 

  • Hull D (1975) Introduction to dislocations, 2nd edn. Pergamon Press, Oxford, 271 pp

    Google Scholar 

  • Humphreys FJ (1985) Dislocation-particle interactions. In: (ed) Dislocations and properties of real materials, Institute of Metals, London, pp 175–204

    Google Scholar 

  • Hutchinson JW (1970) Elastic-plastic behaviour of polycrystalline metals and composites. Proc Roy Soc Lond A 319:247–272

    Article  Google Scholar 

  • Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc Roy Soc Lond A 348:101–127

    Article  Google Scholar 

  • Hutchinson JW (1977) Creep and plasticity of hexagonal polycrystals as related to single crystal slip. Metall Trans A 8A:1465–1469

    Google Scholar 

  • Jackson I (1986) The laboratory study of seismic wave attenuation. In: Hobbs BE, Heard HC (ed) Mineral and rock deformation: laboratory studies. American Geophysics Union, The Paterson Volume, Washington DC, pp 11–23

    Google Scholar 

  • Jaeger JC, Cook NGW (1979) Fundamentals of rock mechanics, 3rd edn. Chapman and Hall, London, 593 pp

    Google Scholar 

  • Jaoul O, Poumellec M, Froidevaux C, Havette A (1981) Silicon diffusion in forsterite: a new constraint for understanding mantle deformation. In: Anelasticity in the Earth, American Geophysics Union, Washington DC, pp 95–100

    Google Scholar 

  • Jeffrey DJ, Ascrivos A (1976) The rheological properties of suspensions of rigid particles. J Amer Inst Chem Eng 22:417–432

    Article  Google Scholar 

  • Johnson WG, Gilman JJ (1959) Dislocation velocities, dislocations densities, and plastic flow in lithium fluoride crystals. J Appl Phys 30:129

    Google Scholar 

  • Jones R (1983) Theories of dislocation mobility in semiconductors. J de Phys 44(C4):61–67

    Google Scholar 

  • Jouffrey B (1979) Historique de la notion de dislocation. In: Kubin L, Martin JL (eds) Dislocations et Déformation Plastique. Ecole d’été d’Yravals 3-14 Sept 1979, Les Editions de Physique, pp 1–16

    Google Scholar 

  • Jung J (1981) A note on the influence of hydrostatic pressure on dislocations. Phil Mag A 43:1057–1061

    Article  Google Scholar 

  • Karato S (1981a) Rheology of the lower mantle. Phys Earth Planet Int 24:1–14

    Article  Google Scholar 

  • Karato S (1981b) Pressure dependence of diffusion in ionic solids. Phys Earth Planet Int 25:38–51

    Article  Google Scholar 

  • Kelly A (1966) Strong solids. Clarendon Press, Oxford, 212 pp

    Google Scholar 

  • Kelly A, Nicholson RB (eds) (1971) Strengthening methods in crystals. Elsevier, Amsterdam, 629 pp

    Google Scholar 

  • Klassen-Neklyudova MV (1964) Mechanical twinning of crystals. Consultants Bureau, New York, 213 pp (translated from Russian by Bradley JES)

    Book  Google Scholar 

  • Kocks UF (1960) Polyslip in single crystals. Acta Metall 8:345–352

    Article  Google Scholar 

  • Kocks UF (1964) Independent slip systems in crystals. Phil Mag 10:187–193

    Article  Google Scholar 

  • Kocks UF (1970) The relation between polycrystal deformation and single crystal deformation. Metall Trans, pp 1121–1143

    Google Scholar 

  • Kocks UF (1984) Solution hardening and strain hardening at elevated temperatures. In: Hansen N et al (eds) Deformation, Processing, and Structure, Metals Park, Ohio, American Soc for Metals, pp 89–107

    Google Scholar 

  • Kocks UF (1985a) Dislocation interactions: flow stress and strain hardening. In: Dislocations and properties of real materials. The Institute of Metals, London, pp 125–143

    Google Scholar 

  • Kocks UF (1985b) Kinetics of solution hardening. Met Trans A 16A:2109–2129

    Article  Google Scholar 

  • Kocks UF, Canova GR (1981) How many slip systems and which? In Hansen N et al (eds) Deformation of polycrystals: mechanisms and microstructures. Risø National Laboratory, Roskilde Denmark, pp 35–44

    Google Scholar 

  • Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Pergamon Press, London, 288 pp

    Google Scholar 

  • Kohlstedt DL, Goetze C, Durham WB, Van der Sande J (1976) New technique for decorating dislocations in olivine. Science 191:1045–1046

    Article  Google Scholar 

  • Kohlstedt DL, Nichols HPK, Hornack P (1980) The effect of pressure on the rate of dislocation recovery in olivine. J Geoph Res 85:3122–3130

    Article  Google Scholar 

  • Kronberg ML (1961) Atom movements and dislocation structures in some common crystals. Acta Metall 9:970–972

    Article  Google Scholar 

  • Kröner E (1961) Zur plastichen verformung des vielkristalls. Acta Metall 9:155–161

    Article  Google Scholar 

  • Kubin L, Martin JL (1980) In situ deformation experiments in the HVEM. In: 5th international conference on strength of metals and alloys 1979, vol 3. Pergamon Press, Toronto, pp 1639–1660

    Google Scholar 

  • Kuhlmann-Wilsdorf D (1985) Theory of work hardening 1934–1984. Metall Trans A 16A:2091–2108

    Google Scholar 

  • Labusch R, Schröter W (1975) Electrical and optical properties of dislocations in semiconductors. In: Huntley FA (ed) Proceedings of international conference on lattice defects in semiconductors, Freiberg, 1974, Institute of Physics, Bristol, pp 56–72

    Google Scholar 

  • Lagneborg R (1972) A modified recovery creep model and its evaluation. Met Sci J 6:127–133

    Google Scholar 

  • Le Hazif R (1979) Propriétés mécaniques des alliages biphasés. In: Dislocations et Deformation Plastique. Ecole d’été d’Yravals, 3-14 Sept 1979, Paris, Les Editions de Physique, pp 327–343

    Google Scholar 

  • Le Hazif R (1980) Deformation plastique du systeme biphase fer-argent (limite plastique en fonction de la concentration). Scr Metall 14:987–988

    Article  Google Scholar 

  • Le Hazif R, Thomas de Montpreville C (1981) Relations entre les propriétés élasto-plastique des alliages biphasés isotropes à microstructure grossière et celles du leurs constituants. Res Mechanica Lett 1:61–65

    Google Scholar 

  • Leffers T (1979) A modified Sachs approach to the plastic deformation of polycrystals as a realistic alternative to the Taylor Model. In: Haasen et al P (eds) Strength of metals and alloys, vol 2. Pergamon Press, Toronto, pp 769–774

    Google Scholar 

  • Leffers T (1981) Microstructures and mechanisms of polycrystal deformation at low temperature. In: Hansen N, Horsewell A, Leffers T, Lilholt H (eds) Deformation of polycrystals: mechanisms and microstructures. Risø National Laboratory, Roskilde, Denmark, pp 55–71

    Google Scholar 

  • Li JCM (1963) Petch relation and grain boundary sources. Trans AIME 227:239–247

    Google Scholar 

  • Li L, Weidner D, Raterron P, Chen J, Vaughan M (2004) Stress measurements of deforming olivine at high pressure. Phys Earth Planet Int 143–144:357–367

    Article  Google Scholar 

  • Lin P, Przystupa MA, Ardell AJ (1985) Dislocation of network dynamics during creep deformation of monocrystalline sodium chloride. In: Strength of metals and alloys. Proceedings of 7th international conference on metals and alloys, vol 1. Pergamon Press, Oxford, pp 595–600

    Google Scholar 

  • Lister GS (1979) Fabric transitions in plastically deformed quartzites: competition between basal, prism and rhomb systems. Bull Minéral 102:232–241

    Google Scholar 

  • Lister GS, Hobbs BE (1980) The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history. J Struct Geol 2:355–370

    Article  Google Scholar 

  • Lister GS, Paterson MS (1979) The simulation of fabric development during plastic deformation and its application to quartzite: fabric transitions. J Struct Geol 1:99–115

    Article  Google Scholar 

  • Lister GS, Price GP (1978) Fabric development in a quartz-feldspar mylonite. Tectonophysics 49:37–78

    Article  Google Scholar 

  • Lister GS, Paterson MS, Hobbs BE (1978) The simulation of fabric development in plastic deformation and its application to quartzite. Model Tectonophys 44:107–158

    Article  Google Scholar 

  • Louchet F (1979) Plasticité des métaux de structure cubique centré. In: Kubin L, Martin JL (eds) Dislocations et Déformation Plastique. Ecole d’été d’Yravals, 3–14 Sept 1979, Les Editions de Physique, pp 149–160

    Google Scholar 

  • Louchet F, George A (1983) Dislocation mobility measurements—an essential tool for understanding the atomic and electronic core structure of dislocations in semiconductors. J de Phys 44(C4):51–60

    Google Scholar 

  • Lyall KD (1965) Plastic deformation of Galena. PhD thesis, The Australian National University, 224 pp

    Google Scholar 

  • Mahajan S (1981) The nucleation and growth of deformation twins in metallic crystals. In: Ashby MF et al (eds) Dislocation modelling in physical systems. Pergamon Press, Oxford, pp 217–221

    Google Scholar 

  • Martin JW (1980) Micro mechanisms in particle-hardened alloys. Cambridge University Press, Cambridge, 201 pp

    Google Scholar 

  • Mataré HF (1971) Defect electronics in semiconductors. Wiley, New York

    Google Scholar 

  • McLaren AC, Fitz Gerald JD, Gerretsen J (1989) Dislocation nucleation and multiplication in synthetic quartz: relevance to water weakening. Phys Chem Min 16:465–482

    Google Scholar 

  • McLaren AC, Turner RG, Boland JN, Hobbs BE (1970) Dislocation structure of deformation lamellae in synthetic quartz: a study by electron and optical microscopy. Contr Mineral Petrol 29:104–115

    Article  Google Scholar 

  • McLaren AC, Cook RF, Hyde ST, Tobin RC (1983) The mechanisms of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Phys Chem Miner 9:79–94

    Article  Google Scholar 

  • McQueen HJ (1977) The production and utility of recovered dislocation substructures. Metall Trans 8A:807–824

    Google Scholar 

  • Means WD (1976) Stress and strain. Basic concepts of continuum mechanics for geologists. Springer, New York, 339 pp

    Google Scholar 

  • Mecking H (1980) Deformation of polycrystals. In: McQueen HJ et al (eds) Strength of metals and alloys. Proceedings of ICSMAS 1979, vol 3. Pergamon Press, Toronto, pp 1573–1594

    Google Scholar 

  • Mecking H (1981a) Strain hardening and dynamic recovery. In: Ashby MF (ed) Dislocation modelling of physical systems. Pergamon Press, Oxford, pp 197–211

    Google Scholar 

  • Mecking H (1981b) Low temperature deformation of polycrystals. In: Hansen N et al (ed) Mechanisms and microstructures. Risø National Laboratory, Roskilde, Denmark, pp 73–86

    Google Scholar 

  • Mecking H, Gottstein G (1978) Recovery and recrystallization during deformation. In: Haessner F (ed) Recrystallization of metallic materials, 2nd edn. Dr Riederer Verlag, Stuttgart, pp 195–222

    Google Scholar 

  • Mitchell TE, Foxall RA, Hirsch PB (1963) Work-hardening in niobium single crystals. Phil Mag 8:1895–1920

    Article  Google Scholar 

  • Mitra SK, McLean D (1966) Work-hardening and recovery in creep. Proc Roy Soc (Lon) A295:288–299

    Article  Google Scholar 

  • Morris MA, Martin JL (1984a) Microstructural dependence of effective stresses and activation volumes in creep. Acta Metall 32:1609–1623

    Article  Google Scholar 

  • Morris MA, Martin JL (1984b) Evolution of internal stress and substructure during creep at intermediate temperatures. Acta Metall 32:549–561

    Article  Google Scholar 

  • Morrison-Smith DJ (1973) A mechanical and microstructural investigation of the deformation of synthetic quartz crystals. PhD thesis, The Australian National University, 222 pp

    Google Scholar 

  • Mott NF (1953) A theory of work-hardening of metals. II: Flow without slip lines, recovery and creep. Phil Mag 44:742–765

    Google Scholar 

  • Mott NF, Nabarro FRN (1948) Dislocation theory and transient creep. In: Report of a conference on strength of solids, held at H H Wills Physical Laboratory, Univ of Bristol, 7-9 July 1947, London, The Physical Society, pp 1-19

    Google Scholar 

  • Nabarro FRN (1950) Influence of grain boundaries on the plastic deformation of metals. In: Harrison VGW (ed) Some Recent Developments in Rheology, London, United Trade Press (for British Rheologist’s Club), pp 38–52

    Google Scholar 

  • Nabarro FRN (1967) Theory of crystal dislocations. Clarendon Press, Oxford, 821 pp. (also Dover, New York, 1987)

    Google Scholar 

  • Nabarro FRN (1984a) Dislocation cores in crystals with large unit cells. In: Kubin L, Castaing J (eds) Dislocations 1984. Core structure and physical properties, Paris, Editions du CNRS, pp 19–28

    Google Scholar 

  • Nabarro FRN (1984b) Hollow dislocations in highly anisotropic crystals. S Afr J Phys 7:73–74

    Google Scholar 

  • Nabarro FRN (1985) Soluton hardening. In: Dislocations and Properties of Real Materials, London, The Institute of Metals, pp 152–169

    Google Scholar 

  • Nabarro FRN, Basinski ZS, Holt DB (1964) The plasticity of pure single crystals. Adv Phys 13:193–324

    Article  Google Scholar 

  • Nicolas A, Poirier JP (1976) Crystalline plasticity and solid state flow in metamorphic rocks. Wiley, London, 444 pp

    Google Scholar 

  • Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic, New York, 677 pp

    Google Scholar 

  • Orowan E (1934) Zür Kristallplastizität. III. Über den Mechanismus des Gleitvorganges. Zeit Physik 89:634–659

    Article  Google Scholar 

  • Orowan E (1942) A type of plastic deformation new in metals. Nature 149:643–644

    Article  Google Scholar 

  • Orowan E (1946) The creep of metals. J West Scotland Iron Steel Inst 54:45–96

    Google Scholar 

  • Öström P, Ahlblom B (1980) A dislocation link length model for strain-hardening in stage-II of polycrystalline metals of high stacking fault energy. Mate Sci Eng 43:115–124

    Article  Google Scholar 

  • Öström P, Lagnerborg R (1980) A dislocation link length model for creep. Res Mechanica 1:59–79

    Google Scholar 

  • Pabst A (1955) Transformation of indices in twin gliding. Geol Soc Am Bull 66:897–912

    Article  Google Scholar 

  • Paterson MS (1969) The ductility of rocks. In: Argon S (ed) Physics of strength and plasticity. M.I.T. Press, Cambridge, pp 377–392

    Google Scholar 

  • Paterson MS (1985) Dislocations and geological deformation. In: Dislocations and properties of real materials. The Institute of Metals, London, pp 359–377

    Google Scholar 

  • Paterson MS, Weaver CW (1970) Deformation of polycrystalline MgO under pressure. J Am Ceram Soc 53:463–471

    Article  Google Scholar 

  • Paterson MS, Weiss LE (1966) Experimental deformation and folding in phyllite. Geol Soc Am Bull 77:343–374

    Article  Google Scholar 

  • Peirce D, Asaro RJ, Needleman A (1982) An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall 30:1087–1119

    Article  Google Scholar 

  • Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metall 31:1951–1976

    Article  Google Scholar 

  • Perez PJ, Tatibouët J, Vassoille R, Gobin PF (1975) Comportement dynamique des dislocations dans la glace. Phil Mag 31:985–999

    Article  Google Scholar 

  • Petch NJ (1953) The cleavage strength of crystals. J Iron Steel Inst 174:25–28

    Google Scholar 

  • Petrovic JJ, Vasudevan AK (1978) Rolling deformation of two-ductile-phase Ag-Ni alloys. Mat Sci Eng 34:39–51

    Article  Google Scholar 

  • Philibert J (1979) Glissement des dislocations et frottement de réseau. In: Dislocations et Déformation Plastique. Ecole d’été d’Yravals 2-24 Sept 1979, Paris, Les Editions de Physique, pp 101–139

    Google Scholar 

  • Piatti G Ed (1978) Advances in composite materials. Applied Science Publishers, London, p 405

    Google Scholar 

  • Poirier JP (1976) On the symmetrical role of cross-slip of screw dislocations and climb of edge dislocations as recovery processes controlling high-temperature creep. Rev Phys Appl 11:731–738

    Article  Google Scholar 

  • Poirier JP (1978) Is power-law creep diffusion controlled? Acta Metall 26:629–637

    Article  Google Scholar 

  • Poirier JP (1979) Reply to “Diffusion-controlled dislocation creep: a defence”. Acta Metall 27:401–403

    Article  Google Scholar 

  • Poirier J-P (1985) Creep of crystals. High-temperature deformation processes in metals. Ceramics and minerals. Cambridge University Press, New York, 260 pp

    Google Scholar 

  • Poirier JP, Vergobbi B (1978) Splitting of dislocations in olivine, cross-slip controlled creep and mantle rheology. Phys Earth Planet Int 35:707–720

    Google Scholar 

  • Polanyi M (1934) Ueber eine Art Gitterstörung, die einen Kristall plastisch machen könnte, Zeit. Physik 89:660–664

    Article  Google Scholar 

  • Pratt PL (1967) Strength and deformation of ionic materials. Geophys J R Astr Soc 14:5–11

    Article  Google Scholar 

  • Puls MP (1981) Atomic models of single dislocations. In: Dislocation modelling of physical systems. Proceedings of International Conference, Gainesville, Florida, USA June 22–27 1980. Pergamon Press, Oxford, pp 249–268

    Google Scholar 

  • Roberts W (1984) Dynamic changes that occur during hot working and their influence regarding microstructural development and hot workability. In: Krauss G (ed) Deformation, processing, and structure. American Society for Metals, Metals Park, Ohio, pp 109–184

    Google Scholar 

  • Ross JV, Ave Lallement HG, Carter NL (1979) Activation volume for creep in the upper mantle. Science 203:261–263

    Article  Google Scholar 

  • Sachs G (1928) Zur Ableitung einer Fliessbedingung. Z Verein deutsch Ing 72:734–736

    Google Scholar 

  • Sammis CG, Smith JC, Schubert G (1981) A critical assessment of estimation methods for activation volume. J Geoph Res 86:10707–10718

    Article  Google Scholar 

  • Saxl I, Kroupa F (1972) Relations between the experimental parameters describing the steady state and transient creep. Phys Stat Sol (a) 11:167–173

    Google Scholar 

  • Schmid E (1924) “Yield point” of crystals. Critical shear stress law. In: Proceedings of First International Congress for Applied Mechanics, Delft 1924, Technische Boekhandel en Drukkerij J Waltman Jr, p 342

    Google Scholar 

  • Schmid E, Boas W (1936) Kristallplastizität mit besonderer Berücksichtigung der Metalle. Springer, Berlin, 373 pp

    Google Scholar 

  • Schmid E, Boas W (1950) Plasticity of crystals (tr from German). F A Hughes and Co Ltd, London, 353 pp

    Google Scholar 

  • Schmid SM, Paterson MS (1977) Strain analysis in an experimentally deformed oolitic limestone. In: Saxena S, Bhattacharji S (eds) Energetics of geological processes, Hans Ramberg Volume. Springer, Berlin, pp 67–93

    Google Scholar 

  • Schmid SM, Paterson MS, Boland JN (1980) High-temperature flow and dynamic recrystallization in Carrara marble. Tectonophysics 65:245–280

    Article  Google Scholar 

  • Schoeck G (1980) Thermodynamics and thermal activation of dislocations. In: Nabarro FRN (ed) Dislocations in solids, vol 3. Moving dislocations. North-Holland Publ Co, Amsterdam, pp 63–163

    Google Scholar 

  • Schoeck G, Seeger A (1959) The flow stress of iron and its dependence on impurities. Acta Metall 7:469–477

    Article  Google Scholar 

  • Seeger A (1984) Structure and diffusion of kinks in monatomic crystals. In: Dislocations 1984, Paris, Editions du CNRS, pp 141–177

    Google Scholar 

  • Seeger A, Haasen P (1958) Density changes in crystals containing dislocations. Phil Mag 3:470–475

    Google Scholar 

  • Seeger A, Berner R, Wolf H (1959) Die experimentelle Bestimmung von Stapelfehlenenergien kubischflachenzentrierter Metalle. Zeit Physik 155:247–262

    Article  Google Scholar 

  • Sellars CM (1978) Recrystallization of metals during hot deformation. Phil Trans Roy Soc Lon Ser A 288:147–158

    Article  Google Scholar 

  • Sherby OD, Weertman J (1979) Diffusion-controlled dislocation creep: a defense. Acta Metall 27:387–400

    Article  Google Scholar 

  • Smith CS (1964) Some elementary principles of polycrystalline microstructure. Met Rev 9:1–48

    Article  Google Scholar 

  • Spingarn JR, Barnett DM, Nix WD (1979) Theoretical descriptions of climb controlled steady state creep at high and intermediate temperatures. Acta Metall 27:1549–1561

    Article  Google Scholar 

  • Sprackling MT (1976) The plastic deformation of simple ionic crystals. Academic, London, 242 pp

    Google Scholar 

  • Steeds JW (1973) Introduction to anisotropic elasticity theory of dislocations. Clarendon Press, Oxford, 274 pp

    Google Scholar 

  • Strudel J-L (1983) Mechanical properties of multiphase alloys. In: Cahn RW, Haasen P (eds) Physical metallurgy, part II, 3rd edn. North-Holland, Amsterdam, pp 1411–1486

    Google Scholar 

  • Stünitz H, Fitz Gerald JD, Tullis J (2003) Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics 372:215–233

    Google Scholar 

  • Takeuchi S, Argon AS (1976) Steady-state creep of alloys due to viscous motion of dislocations. Acta Metall 24:883–889

    Article  Google Scholar 

  • Takeuchi S, Argon AS (1979) Glide and climb resistance to the motion of an edge dislocation due to dragging a Cottrell atmosphere. Phil Mag A 40:65–76

    Article  Google Scholar 

  • Taylor GI (1934) The mechanism of plastic deformation of crystals. Part I. Theoretical, Proc Roy Soc (London), A 145, 362-387

    Google Scholar 

  • Taylor GI (1938) Plastic strain in metals. J Inst Metals 62:307–324

    Google Scholar 

  • Thomas de Montpreville C (1983) Modèles tridimensionels pour le calcul des comportments mécanique des alliages polyphasés. Res Mechanica 7:211–230

    Google Scholar 

  • Thompson N, Millard DJ (1952) Phil Mag 43:422

    Google Scholar 

  • Tomé C, Canova GR, Kocks UF, Christodoulu N, Jonas JJ (1984) The relation between macroscopic and microscopic strain hardening in f.c.c. polycrystals. Acta Metall 32:1637–1653

    Article  Google Scholar 

  • Tungatt PD, Humphries FJ (1981) An in situ optical investigation of the deformation behaviour of sodium nitrate—an analogue for calcite. Tectonophysics 78:661–675

    Article  Google Scholar 

  • Tungatt PD, Humphries FJ (1984) The plastic deformation and dynamic recrystalization of polycrystalline sodium nitrate. Acta Metall 32:1625–1635

    Article  Google Scholar 

  • Underwood EE (1970) Quantitative stereology. Addison-Wesley Publishing, 274 pp

    Google Scholar 

  • Vanderschaeve G, Escaig B (1979) Glissement dévié des dislocations. In: Dislocations et Déformations Plastique. Ecole d’été d’Yravals, 3-14 Sept 1979, Paris, Les Editions de Physique, pp 141–148

    Google Scholar 

  • Vitek V (1985) Effect of dislocation core structure on the plastic properties of metallic materials. In: Dislocations and properties of real materials. The Institute of Metals, London, pp 30–50

    Google Scholar 

  • von Mises R (1928) Mechanik der plastischen Formänderung von Kristallen. Zeit für angewandte Math U Mech 8:161–185

    Article  Google Scholar 

  • Waff HS, Bulau JS (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. J Geophys Res 84:6109–6114

    Article  Google Scholar 

  • Weertman J (1955) Theory of steady-state creep based on dislocation climb. J Appl Phys 26:1213–1217

    Article  Google Scholar 

  • Weertman J (1957) Steady-state creep of crystals. J Appl Phys 28:1185–1189

    Article  Google Scholar 

  • Weertman J (1968) Dislocation climb theory of steady-state creep. Trans Am Soc Metals 61:681–694

    Google Scholar 

  • Weertman J (1975) High temperature creep produced by dislocation motion. In: Li JCM, Mukherjee AK (eds) Rate processes in plastic deformation of materials. Proceedings of John E. Dorn Symposium American Society on Metals, Oct. 1972, Metals Park, Ohio, pp 315–336

    Google Scholar 

  • Weertman J (1977) Theory of internal stress for class I high temperature alloys. Acta Metall 25:1393–1401

    Article  Google Scholar 

  • Weertman J, Weertman JR (1964) Elementary dislocation theory. MacMillan, New York, 213 pp

    Google Scholar 

  • Weertman J, Weertman JR (1980) Moving dislocations. In: Nabarro FRN (ed) Dislocations in solids. Amsterdam, North-Holland, pp 1–59

    Google Scholar 

  • Weertman J, Weertman JR (1983a) Mechanical properties, mildly temperature-dependent. In: Physical metallurgy, 3rd edn. North Holland Physics Publishing, Amsterdam, pp 1259–1307

    Google Scholar 

  • Weertman J, Weertman JR (1983b) Mechanical properties, strongly temperature-dependent. In: Physical metallurgy, 3rd edn. North Holland Physics Publishing, Amsterdam, pp 1309–1340

    Google Scholar 

  • Weertman J, Weertman JR (1992) Elementary dislocation theory. Oxford University Press, Oxford, 213 pp

    Google Scholar 

  • Wegner MW, Christie JM (1985a) General chemical etchants for microstructures and defects in silicates. Phys Chem Min 12:90–92

    Article  Google Scholar 

  • Wegner MW, Christie JM (1985b) Chemical etching of amphiboles and pyroxenes. Phys Chem Min 12:86–89

    Article  Google Scholar 

  • Wenk H-R (ed) (1985) Preferred orientation in deformed metals and rocks: an introduction to modern texture analysis. Academic, Orlando

    Google Scholar 

  • Whitworth RW (1975) Charged dislocations in ionic crystals. Adv Phys 24:203–304

    Article  Google Scholar 

  • Wolf H (1960) Die Aktivierungsenergie für die Quergleitung aufspaltener Schraubenversetzungen. Zeit Naturforschung A 15:180–193

    Google Scholar 

  • Yund RA, Tullis J (1983) Strained cell parameters for coherent lamellae in alkali feldspars and iron-free pyroxenes. N Jb Miner Mh Jg 1983:22–34

    Google Scholar 

  • Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago 170 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervyn S. Paterson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paterson, M.S. (2013). Deformation Mechanisms: Crystal Plasticity. In: Materials Science for Structural Geology. Springer Geochemistry/Mineralogy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5545-1_6

Download citation

Publish with us

Policies and ethics