Skip to main content

In vitroOligomerization and Fibrillogenesis of Amyloid-beta Peptides

  • Chapter
  • First Online:
Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 65))

Abstract

The amyloid beta Ab(1–40) and Ab(1–42) peptides are the main components of the fibrillar plaques characteristically found in the brains affected by Alzheimer’s disease. Fibril formation has been thoroughly studied in vitro using synthetic amyloid peptides and has been described to be a nucleation dependent polymerization process. During this process, defined by a slow nucleation phase followed by a rapid exponential elongation reaction, a whole range of aggregated species (low and high molecular weight aggregates) precede fibril formation. Toxic species related to the onset and development of Alzheimer’s disease are thought to be found among these prefibrillar aggregates. Two main procedures are used to experimentally monitor fibril formation kinetics: through the measurement of the light scattered by the different peptide aggregates and using the fluorescent dye thioflavin T, which fluorescence increases when specifically interacting with amyloid fibrils. Reproducibility may, however, be difficult to achieve when measuring and characterizing fibril formation kinetics. This fact is mainly due to the difficulty in experimentally handling amyloid peptides, which is directly related to the difficulty of having them in a monomeric form at the beginning of the polymerization process. This has to do mainly with the type of solvent used for the preparation of the peptide stock solutions (water, DMSO, TFE, HFIP) and the control of determinant physicochemical parameters such as pH. Moreover, kinetic progression turns out to be highly dependent on the type of peptide counter-ion used, which will basically determine the duration of the nucleation phase and the rate at which high molecular weight oligomers are formed. Centrifugation and filtration procedures used in the preparation of the peptide stock solutions will also greatly influence the duration of the fibril formation process. In this chapter, a survey of the alluded experimental procedures is provided and a general frame is proposed for the interpretation of the fibril formation kinetics, intended to integrate the results from the different experimental approaches. The significance of the different aggregated species in terms of cell toxicity will be discussed. Special emphasis will be given to the influence of pH on the structural and toxic characteristics of amyloid aggregates, an aspect that may be particularly relevant in some specific physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R (2000) Amyloid fibril formation by A beta 16–22, a seven-residue fragment of the Alzheimer’s beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–13759

    Article  PubMed  CAS  Google Scholar 

  • Benseny-Cases N, Cocera M, Cladera J (2007) Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer’s disease amyloid peptide aggregation. Biochem Biophys Res Commun 36:916–921

    Article  Google Scholar 

  • Bensney-Cases N, Klementieva O, Maly J, Cladera J (2011) Granular Non-fibrillar Aggregates and Toxicity in Alzheimer’s Disease. Curr Alzh Res BSP/CAR/E-Pub/00083

    Google Scholar 

  • Benzinger TL, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC (2000) Two-dimensional structure of beta-amyloid(10–35) fibrils. Biochemistry 39:3491–3499

    Article  PubMed  CAS  Google Scholar 

  • Bitan G (2006) Structural study of metastable amyloidogenic protein oligomers by photo-induced cross-linking of unmodified proteins. Meth Enzymol 413:217–236

    Article  PubMed  CAS  Google Scholar 

  • Bitan G, Fradinger EA, Spring SM, Teplow DB (2005) Neurotoxic protein oligomers–what you see is not always what you get. Amyloid 12:88–95

    Article  PubMed  Google Scholar 

  • Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB, 2003a. Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335

    Article  CAS  Google Scholar 

  • Bitan G, Lomakin A, Teplow DB (2001) Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276:35176–35184

    Article  PubMed  CAS  Google Scholar 

  • Bitan G, Teplow DB (2004) Rapid photochemical cross-linking—a new tool for studies of metastable, amyloidogenic protein assemblies. Acc Chem Res 37:357–364

    Article  PubMed  CAS  Google Scholar 

  • Bitan G, Teplow DB (2005) Preparation of aggregate-free, low molecular weight amyloid-beta for assembly and toxicity assays. In: Methods Molecular Biology 299: Amyloid Proteins: Methods and Protocols. Humana, Totowa, p 3–9

    Google Scholar 

  • Bitan, G., Vollers SS, Teplow DB,2003b. Elucidation of primary structure elements controlling early amyloid beta-protein oligomerization. J Biol Chem 278:34882–34889

    Article  CAS  Google Scholar 

  • Brining SK (1997) Predicting the in vitro toxicity of synthetic beta-amyloid (1–40). Neurobiol Aging 18:581–589

    Article  PubMed  CAS  Google Scholar 

  • Broersen K, Jonckheere W, Rozenski J, Vandersteen A, Pauwels K, Pastore A, Rousseau F, Schymkowitz J (2011) A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer’s disease. Protein Eng Des Sel 24:743–750

    Article  PubMed  CAS  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  • Bucciantini M, Rigacci S, Berti A, Pieri L, Cecchi C, Nosi D, Formigli L, Chiti F, Stefani M (2005) Patterns of cell death triggered in two different cell lines by HypF-N prefibrillar aggregates. Faseb J 19:437–439

    PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Ann Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  • Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, et al (2003) Self-assembly of Abeta(1–42) into globular neurotoxins. Biochemistry 42:12749–12760

    Article  PubMed  CAS  Google Scholar 

  • Cortijo-Arellano M, Ponce J, Durany N, Cladera J (2008) Amyloidogenic properties of the prion protein fragment PrP(185–208): comparison with Alzheimer’s peptide Abeta(1–28), influence of heparin and cell toxicity. Biochem Biophys Res Commun 368:238–242

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren KN, Manelli AM, Stine WB, Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053

    Article  PubMed  CAS  Google Scholar 

  • Danielsson J, Andersson A, Jarvet J, Graslund. A. (2006) 15N relaxation study of the amyloid beta-peptide: structural propensities and persistence length. Mag Reson Chem 44(Spec No):S114–121

    Article  Google Scholar 

  • Dong J, Lu K, Lakdawala A, Mehta AK, Lynn DG (2006) Controlling amyloid growth in multiple dimensions. Amyloid 13:206–215

    Article  PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Irvine GB, Guthrie DJ (1997) Conformations of beta-amyloid in solution. J Neurochem 68:437–439

    PubMed  CAS  Google Scholar 

  • Fay DS, Fluet A, Johnson CJ, Link CD (1998) In vivo aggregation of beta-amyloid peptide variants. J Neurochem 71:1616–1625

    Article  PubMed  CAS  Google Scholar 

  • Fezoui Y, Hartley DM, Harper JD, Khurana R, Walsh DM, Condron MM, Selkoe DJ, Lansbury PT Jr, Fink AL, Teplow DB (2000) An improved method of preparing the amyloid beta-protein for fibrillogenesis and neurotoxicity experiments. Amyloid 7:166–178

    Article  PubMed  CAS  Google Scholar 

  • Findeis MA (2002) Peptide inhibitors of beta amyloid aggregation. Curr Top Med Chem 2:417–423

    Article  PubMed  CAS  Google Scholar 

  • Ha C, Ryu J, Park CB (2007) Metal ions differentially influence the aggregation and deposition of Alzheimer’s beta-amyloid on a solid template. Biochemistry 46:6118–6125

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nature Rev Mol Cell Biol 8:101–112

    Article  CAS  Google Scholar 

  • Harper JD, Lansbury, PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Ann Rev Biochem 66:385–407

    Article  PubMed  CAS  Google Scholar 

  • Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–8884

    PubMed  CAS  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1991) Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer’s disease. J Mol Biol 218:149–163

    Article  PubMed  CAS  Google Scholar 

  • Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc Natl Acad Sci USA 100:6370–6375

    Article  PubMed  CAS  Google Scholar 

  • Jahn TR, Makin OS, Morris KL, Marshall KE, Tian P, Sikorski P, Serpell LC (2010) The common architecture of cross-beta amyloid. J Mol Biol 395:717–727

    Article  PubMed  CAS  Google Scholar 

  • Kirkitadze MD, Bitan G, Teplow DB (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69:567–577

    Article  PubMed  CAS  Google Scholar 

  • Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 312:1103–1119

    Article  PubMed  CAS  Google Scholar 

  • Klug GM, Losic D, Subasinghe SS, Aguilar MI, Martin LL, Small DH (2003) Beta-amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH. Eur J Biochem 270:4282–4293

    Article  PubMed  CAS  Google Scholar 

  • Krebs MR, Bromley EH, Donald AM (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149:30–37

    Article  PubMed  CAS  Google Scholar 

  • Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM (2000) Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 39:10309–10318

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  PubMed  CAS  Google Scholar 

  • Laurents DV, Gorman PM, Guo M, Rico M, Chakrabartty A, Bruix M (2005) Alzheimer’s Abeta40 studied by NMR at low pH reveals that sodium 4,4-dimethyl-4-silapentane-1-sulfonate (DSS) binds and promotes beta-ball oligomerization. J Biol Chem 280:3675–3685

    Article  PubMed  CAS  Google Scholar 

  • LeVine H 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Meth Enzymol 309:274–284

    Article  PubMed  CAS  Google Scholar 

  • McLaurin J, Chakrabartty A (1996) Membrane disruption by Alzheimer beta-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. Implications for neurotoxicity. J Biol Chem 271:26482–26489

    Article  PubMed  CAS  Google Scholar 

  • McLaurin J, Fraser PE (2000) Effect of amino-acid substitutions on Alzheimer’s amyloid-beta peptide-glycosaminoglycan interactions. Eur J Biochem 267:6353–6361

    Article  PubMed  CAS  Google Scholar 

  • Millucci L, Raggiaschi R, Franceschini D, Terstappen G, Santucci A (2009) Rapid aggregation and assembly in aqueous solution of A beta (25–35) peptide. J Biosci 34:293–303

    Article  PubMed  CAS  Google Scholar 

  • Mukai H, Isagawa T, Goyama E, Tanaka S, Bence NF, Tamura A, Ono Y, Kopito RR (2005) Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc Natl Acad Sci USA 102:10887–10892

    Article  PubMed  CAS  Google Scholar 

  • Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160

    Article  PubMed  CAS  Google Scholar 

  • Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE, Rozovsky I, Stine WB, Snyder SW, Holzman TF, et al. (1995) Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1–42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol 136:22–31

    Article  PubMed  CAS  Google Scholar 

  • Peralvarez-Marin A, Barth A, Graslund A (2008) Time-resolved infrared spectroscopy of pH-induced aggregation of the Alzheimer Abeta(1–28) peptide. J Mol Biol 379:589–596

    Article  PubMed  CAS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    Article  PubMed  CAS  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. New Engl J Med 362:329–344

    Article  PubMed  CAS  Google Scholar 

  • Sticht H, Bayer P, Willbold D, Dames S, Hilbich C, Beyreuther K, Frank RW, Rosch P (1995) Structure of amyloid A4-(1–40)-peptide of Alzheimer’s disease. Eur J Biochem 233:293–298

    Article  PubMed  CAS  Google Scholar 

  • Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622

    Article  PubMed  CAS  Google Scholar 

  • Teplow DB (2006) Preparation of amyloid beta-protein for structural and functional studies. Meth Enzymol 413:20–33

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Thulin E, Minogue AM, Gustavsson N, Pang E, Teplow DB, Linse S (2009) A facile method for expression and purification of the Alzheimer’s disease-associated amyloid beta-peptide. Febs J 276:1266–1281

    Article  PubMed  CAS  Google Scholar 

  • Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft, G.A. et al. (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

    Article  PubMed  CAS  Google Scholar 

  • Ward RV, Jennings KH, Jepras R, Neville W, Owen DE, Hawkins J, Christie G, Davis JB, George A, Karran EH, et al. (2000) Fractionation and characterization of oligomeric, protofibrillar and fibrillar forms of beta-amyloid peptide. Biochem J 348:137–144

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS (2002) Therapeutic strategies for Alzheimer’s disease. Nat Rev Drug Discov 1:859–866

    Article  PubMed  CAS  Google Scholar 

  • Xue WF, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284:34272–34282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Cladera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benseny-Cases, N., Klementieva, O., Cladera, J. (2012). In vitroOligomerization and Fibrillogenesis of Amyloid-beta Peptides. In: Harris, J. (eds) Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5416-4_3

Download citation

Publish with us

Policies and ethics