Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 27))

  • 1895 Accesses

Abstract

The dynamic behaviour of an axially moving viscoelastic band, in contact with supporting rollers, is studied. A model of a thin, viscoelastic beam (panel) subjected to bending and centrifugal forces is used. An initial-boundary value problem for a fifth-order partial differential equation describing the movement of the band is formulated in detail. In this paper, five boundary conditions in total are used for the first time within the present model. An external force describing the normal force of the roller supports is included. Combining this viscoelastic model with the roller contact simulation is a new approach among moving band behaviour studies. The initial-boundary value problem is solved numerically using the fourth-order Runge-Kutta method and the central finite differences, and the band behaviour is illustrated for different band velocities and degrees of viscosity. It is found that the damping effect of viscoelasticity increases when the band velocity increases, and that the roller contact has a greater effect on the elastic panel behaviour than on the viscoelastic panel behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archibald FR, Emslie AG (1958) The vibration of a string having a uniform motion along its length. J Appl Mech 25:347–348

    MATH  Google Scholar 

  2. Banichuk N, Jeronen J, Kurki M, Neittaanmäki P, Saksa T, Tuovinen T (2011) On the limit velocity and buckling phenomena of axially moving orthotropic membranes and plates. Int J Solids Struct 48(13):2015–2025

    Article  Google Scholar 

  3. Banichuk N, Jeronen J, Neittaanmäki P, Tuovinen T (2011) Dynamic behaviour of an axially moving plate undergoing small cylindrical deformation submerged in axially flowing ideal fluid. J Fluids Struct 27(7):986–1005

    Article  Google Scholar 

  4. Chen L-Q, Chen H, Lim CW (2008) Asymptotic analysis of axially accelerating viscoelastic strings. Int J Eng Sci 46(10):976–985. doi:10.1016/j.ijengsci.2008.03.009

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen L-Q, Ding H (2010) Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams. J Vib Acoust 132:011009. doi:10.1115/1.4000468

    Article  Google Scholar 

  6. Chen L-Q, Wang B (2009) Stability of axially accelerating viscoelastic beams: asymptotic perturbation analysis and differential quadrature validation. Eur J Mech A, Solids 28(4):786–791. doi:10.1016/j.euromechsol.2008.12.002

    Article  MATH  Google Scholar 

  7. Chen L-Q, Yang X-D (2006) Vibration and stability of an axially moving viscoelastic beam with hybrid supports. Eur J Mech A, Solids 25(6):996–1008. doi:10.1016/j.euromechsol.2005.11.010

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen L-Q, Zhao W-J (2005) A numerical method for simulating transverse vibrations of an axially moving string. Appl Math Comput 160(2):411–422. doi:10.1016/j.amc.2003.11.012

    Article  MathSciNet  MATH  Google Scholar 

  9. Chonan S (1986) Steady state response of an axially moving strip subjected to a stationary lateral load. J Sound Vib 107:155–165

    Article  Google Scholar 

  10. Ding H, Chen L-Q (2008) Stability of axially accelerating viscoelastic beams: multi-scale analysis with numerical confirmations. Eur J Mech A, Solids 27(6):1108–1120. doi:10.1016/j.euromechsol.2007.11.014

    Article  MathSciNet  MATH  Google Scholar 

  11. Fung R-F, Huang J-S, Chen Y-C (1997) The transient amplitude of the viscoelastic travelling string: an integral constitutive law. J Sound Vib 201(2):153–167. doi:10.1006/jsvi.1996.0776

    Article  Google Scholar 

  12. Fung R-F, Huang J-S, Chen Y-C, Yao C-M (1998) Nonlinear dynamic analysis of the viscoelastic string with a harmonically varying transport speed. Comput Struct 66(6):777–784. doi:10.1016/S0045-7949(98)00001-7

    Article  MATH  Google Scholar 

  13. Guan X (1995) Modeling of viscoelastic effects on web handling system behavior. PhD thesis, Oklahoma State University

    Google Scholar 

  14. Guan X, High MS, Tree DA (1995) Viscoelastic effects in modeling web handling systems: steady-state analysis. J Appl Mech 62(4):908–914. doi:10.1115/1.2789031

    Article  MATH  Google Scholar 

  15. Guan X, High MS, Tree DA (1998) Viscoelastic effects in modeling web handling systems: unsteady-state analysis. J Appl Mech 65(1):234–241. doi:10.1115/1.2789031

    Article  Google Scholar 

  16. Kurki M, Lehtinen A (2009) In-plane strain field theory for 2-d moving viscoelastic webs. In: Papermaking research symposium 2009, Kuopio, Finland. PRS

    Google Scholar 

  17. Lee U, Oh H (2005) Dynamics of an axially moving viscoelastic beam subject to axial tension. Int J Solids Struct 42(8):2381–2398

    Article  Google Scholar 

  18. Lin CC (1997) Stability and vibration characteristics of axially moving plates. Int J Solids Struct 34(24):3179–3190

    Article  MATH  Google Scholar 

  19. Lin CC, Mote CD (1995) Equilibrium displacement and stress distribution in a two-dimensional, axially moving web under transverse loading. J Appl Mech 62:772–779

    Article  MATH  Google Scholar 

  20. Marynowski K, Kapitaniak T (2002) Kelvin-Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web. Int J Non-Linear Mech 37(7):1147–1161. doi:10.1016/S0020-7462(01)00142-1

    Article  MATH  Google Scholar 

  21. Marynowski K, Kapitaniak T (2007) Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension. Int J Non-Linear Mech 42(1):118–131. doi:10.1016/j.ijnonlinmec.2006.09.006

    Article  MATH  Google Scholar 

  22. Miranker WL (1960) The wave equation in a medium in motion. IBM J Res Dev 4:36–42

    Article  MathSciNet  MATH  Google Scholar 

  23. Mockensturm EM, Guo J (2005) Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings. J Appl Mech 72(3):374–380. doi:10.1115/1.1827248

    Article  MATH  Google Scholar 

  24. Mote CD (1968) Divergence buckling of an edge-loaded axially moving band. Int J Mech Sci 10:281–295

    Article  Google Scholar 

  25. Mote CD (1972) Dynamic stability of axially moving materials. Shock Vib Dig 4(4):2–11

    Article  Google Scholar 

  26. Mote CD (1975) Stability of systems transporting accelerating axially moving materials. J Dyn Syst Meas Control 97:96–98

    Article  Google Scholar 

  27. Oh H, Cho J, Lee U (2004) Spectral element analysis for an axially moving viscoelastic beam. J Mech Sci Technol 18(7):1159–1168. doi:10.1007/BF02983290

    Google Scholar 

  28. Sack RA (1954) Transverse oscillations in traveling strings. Br J Appl Phys 5:224–226

    Article  Google Scholar 

  29. Simpson A (1973) Transverse modes and frequencies of beams translating between fixed end supports. J Mech Eng Sci 15:159–164

    Article  Google Scholar 

  30. Swope RD, Ames WF (1963) Vibrations of a moving threadline. J Franklin Inst 275:36–55

    Article  Google Scholar 

  31. Ulsoy AG, Mote CD (1980) Analysis of bandsaw vibration. Wood Sci 13:1–10

    Google Scholar 

  32. Ulsoy AG, Mote CD (1982) Vibration of wide band saw blades. J Eng Ind 104:71–78

    Article  Google Scholar 

  33. Wickert JA, Mote CD (1990) Classical vibration analysis of axially moving continua. J Appl Mech 57:738–744

    Article  MATH  Google Scholar 

  34. Yang X-D, Chen L-Q (2005) Dynamic stability of axially moving viscoelastic beams with pulsating speed. Appl Math Mech 26(8):905–910

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Jenny and Antti Wihuri foundation, and the Academy of Finland (grant no. 140221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tytti Saksa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saksa, T., Banichuk, N., Jeronen, J., Kurki, M., Tuovinen, T. (2013). Dynamic Behaviour of a Travelling Viscoelastic Band in Contact with Rollers. In: Repin, S., Tiihonen, T., Tuovinen, T. (eds) Numerical Methods for Differential Equations, Optimization, and Technological Problems. Computational Methods in Applied Sciences, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5288-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5288-7_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5287-0

  • Online ISBN: 978-94-007-5288-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics