Skip to main content

Constructed Wetlands for Reducing Pesticide Inputs into Surface Water and Groundwater

  • Chapter
  • First Online:
Wastewater Reuse and Management

Abstract

In this review, the current knowledge on the use of constructed wetlands (CWs) to reduce pesticide inputs into surface water and groundwater and their effectiveness when applied in practice are discussed. Field data show that plants accelerate pesticide dissipation from aquatic systems by increasing sedimentation, biofilm contact, and photolysis. One of the main mechanisms of pesticide removal in CWs is sorption onto plants, support media, and sediments; yet, CWs effectiveness still has to be demonstrated for weakly and moderately sorbing compounds. The hydraulic design (hydraulic retention time, HRT) and the use of adsorbing materials can be useful to increase the pesticides residence time and the contact between pesticides and biocatalysts. Pesticide fluxes can be reduced by 50–80% when increasing ten times the retention time. This, in turn, leads to CW lengths that are much longer than those for municipal wastewater treatment. CWs are a viable and economic alternative technology for the treatment of effluents contaminated with pesticides, compared to conventional treatment systems. Yet, there are some limitations of CWs, inter alia, they are not suitable for high concentrations of xenobiotics, and they should be carefully managed in order to avoid an over contamination by pesticides of the wetland site and associated negative effects (i.e., wetlands that require remediation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Calamari D, Barg U (1993) Hazard assessment of agricultural chemical by simple simulation models. Prevention of water pollution by agricultural and related activities. In: Proceedings of the FAO expert consultation, Santiago, Chile, 20–23 Oct 1992 (pp 207–222). Water report 1. FAO, Rome

    Google Scholar 

  2. Álvarez-Fajardo E, Ksoll W, Luna-Pabello V, Miranda-Ríos M, Ramírez-Carrillo H (2002) Remoción de Escherichia coli y ortofosfatos en aguas residuales parcialmente tratadas empleando diferentes materiales pétreos. Una estrategia para la protección de la vida acuática silvestre. En Memorias del XXVIII Congreso Interamericano de Ingeniería Sanitaria y Ambiental. Cancún, México.

    Google Scholar 

  3. Leu C, Singer H, Stamm C, Muller SR, Schwarzenbach RP (2004) Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application. Environ Sci Technol 38(14):3835–3841

    CAS  Google Scholar 

  4. Poissant L, Beauvais C, Lafrance P, Deblois C (2008) Pesticides in fluvial wetlands catchments under intensive agricultural activities. Sci Total Environ 404:182–195

    CAS  Google Scholar 

  5. Boone MD, James SM (2003) Interactions of an insecticide, herbicide, and natural stressors in amphibian community mesocosms. Ecol Appl 13(3):829–841

    Google Scholar 

  6. De la Vega-Salazar MY, Martinez-Tabche L, Macias-Garcia C (1997) Bioaccumulation of methyl parathion and its toxicology in several species of the freshwater community in Ignacio Ramirez Dam in Mexico. Ecotoxicol Environ Saf 38:53–62

    Google Scholar 

  7. Peterson HG, Boutin C, Martin PA, Freemark KE, Ruecker NJ, Moody MJ (1994) Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations. Aquat Toxicol 28(3/4):275–292

    CAS  Google Scholar 

  8. Zaga A, Little EE, Rabeni CF, Ellersieck MR (1998) Photoenhanced toxicity of a carbamate insecticide to early fife stage anuran amphibians. Environ Toxicol Chem 17(12):2543–2553

    CAS  Google Scholar 

  9. Aulagnier F, Poissant L (2005) Some pesticides occurrence in air and precipitation in Québec, Canada. Environ Sci Technol 39:2960–2967

    CAS  Google Scholar 

  10. Garmounma M, Poissant L (2004) Occurrence, temperature and seasonal trends of a- and g-HCH in air (Quebec, Canada). Atmos Environ 38:369–382

    Google Scholar 

  11. Poissant L, Koprivnjak JF (1996) Fate and atmospheric concentration of α- and γ-hexachlorocyclohexane in Québec, Canada. Environ Sci Technol 30:845–851

    CAS  Google Scholar 

  12. Reichenberger S, Bach M, Skitschak A, Frede HG (2007) Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness: a review. Sci Total Environ 384:1–35

    CAS  Google Scholar 

  13. Rose MT, Crossan AN, Kennedy IR (2008) The effect of vegetation on pesticide dissipation from ponded treatment wetlands: quantification using a simple model. Chemosphere 72:999–1005

    CAS  Google Scholar 

  14. Chen S, Lili S, Zhengjun S, Qiuhui H (2007) Determination of organochlorine pesticide residues in rice and human and fish fat by simplified two-dimensional gas chromatography. Food Chem 104:1315–1319

    CAS  Google Scholar 

  15. Kalyoncu L, Arca I, Aktunmsek A (2009) Some organochlorine pesticide residues in fish species in Konya, Turkey. Chemosphere 74:885–889

    CAS  Google Scholar 

  16. Ayas Z, Ekmekci G, Ozmen M, Yerli SV (2007) Histopathological changes in the livers and kidneys of fish in Sariyar Reservoir, Turkey. Environ Toxicol Pharmacol 23:242–249

    CAS  Google Scholar 

  17. Andersson PL, Berg AH, Bjerselius R, Norrgren L, Olsen H, Olsson PE, Orn S, Tysklind M (2001) Bioaccumulation of selected PCBs in zebrafish, three-spined stickleback and Arctic char three different routes of exposure. Arch Environ Contam Toxicol 40:519–530

    CAS  Google Scholar 

  18. Stefanelli P, Muccio AD, Ferrara F, Barbini DA, Generali T, Pelosi P, Amendola G, Vanni F, Muccio SD, Ausili A (2004) Estimation of intake of organochlorine pesticides and chlorobiphenyls through edible fishes from the Italian Adriatic Sea during 1997. Food Control 15:27–38

    CAS  Google Scholar 

  19. Zaranko TD, Griffiths RW, Kaushik NK (1997) Biomagnification of polychlorinated biphenyls through a riverine food web. Environ Toxicol Chem 16:1463–1471

    CAS  Google Scholar 

  20. Holvoet KMA, Seuntjens P, Vanrolleghem PA (2007) Monitoring and modeling pesticide fate in surface waters at the catchment scale. Review. Ecol Model 209:53–64

    CAS  Google Scholar 

  21. He ZL, Yanga XE, Stoffellab PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    CAS  Google Scholar 

  22. Kloeppel H, Koerdel W, Stein B (1997) Herbicide transport by surface runoff and herbicide retention in a filter strip rainfall and runoff simulation studies. Chemosphere 35:129–141

    Google Scholar 

  23. Olette R, Couderchet M, Biagianti S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70:1414–1421

    CAS  Google Scholar 

  24. Gao JP, Maguhn J, Spitzauer P, Kettrup A (1998) Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: equilibrium assessments, effect of organic carbon content and pH. Water Res 32(5):1662–1672

    CAS  Google Scholar 

  25. Gregoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T, Merli A, Mose R, Passeport E, Payraudeau S, Schutz T, Schulz R, Tapia-Padilla G, Tournebize J, Trevisan M, Wanko A (2008) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Review. Environ Chem Lett. doi:10.1007/s10311-008-0167-9

  26. Araña J, Garriga I, Cabo C, Fernández-Rodríguez C, Herrera-Melián JA, Ortega-Méndez JA, Doña-Rodríguez JM, Pérez-Peña J (2008) Combining TiO2-photocatalysis and wetland reactors for the efficient treatment of pesticides. Chemosphere 71:788–794

    Google Scholar 

  27. Wania F, Haugen JE, Lei YD, Mackay D (1998) Temperature dependence of atmospheric concentrations of semivolatile organic compounds. Environ Sci Technol 32:1013–1021

    CAS  Google Scholar 

  28. Cheng S, Vidakovic-Cifrek Z, Grosse W, Karrenbrock F (2002) Xenobiotics removal from polluted water by a multifunctional constructed wetland. Chemosphere 48:415–418

    CAS  Google Scholar 

  29. Essam T, Hamid Z, Aly-Amin M, El Tayeb O, Mattiasson B, Guieysse B (2006) Sequential UV-biological degradation of chlorophenols. Chemosphere 63:277–284

    Google Scholar 

  30. Essam T, Aly-Amin M, El Tayeb O, Mattiasson B, Guieysse B (2007) Sequential photochemical–biological degradation of chlorophenols. Chemosphere 66:2201–2209

    CAS  Google Scholar 

  31. Chung AKC, Tam NFY, Wong MH (2008) Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecol Eng 32:81–90

    Google Scholar 

  32. Daniels R (2001) Enter the root-zone: green technology for leather manufacturer. World Leather 14(4):63–67

    Google Scholar 

  33. Daniels R (2001) Enter the root-zone: green technology for the leather manufacturer, part 3. World Leather 14(6):85–88

    Google Scholar 

  34. Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:97–117

    Google Scholar 

  35. Zbytniewski R, Buszewski B (2002) Sorption of pesticides in soil and compost. Pol J Environ Stud 11(2):179–184

    CAS  Google Scholar 

  36. Warren N, Allan IJ, Carter JE, House WA, Parker A (2003) Pesticides and other micro-organic contaminants in freshwater sedimentary environments. A review. Appl Geochem 18:159–194

    CAS  Google Scholar 

  37. Harris BC, Bonner JS, Autenrieth RL (1999) Nutrient dynamics in marsh sediments contaminated by an oil spill following a flood. Environ Technol 20:795–811

    CAS  Google Scholar 

  38. Ahmad R, Nelson PN, Kookana RS (2006) The molecular composition of soil organic matter as determined by 13C NMR and elemental analyses and correlation with pesticide sorption. Eur J Soil Sci 57:883–893

    CAS  Google Scholar 

  39. Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Google Scholar 

  40. Guo L, Jury WA, Wagenet RJ, Flury M (2000) Dependence of pesticide degradation on sorption: nonequilibrium model and application to soil reactors. J Contam Hydrol 43(1):45–62

    CAS  Google Scholar 

  41. He Q, Mankin KR (2002) Performance variations of COD and nitrogen removal by vegetated submerged bed wetlands. J Am Water Resour Assoc 38:1679–1689

    CAS  Google Scholar 

  42. Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298(1–3):147–161

    CAS  Google Scholar 

  43. Brix H (1993) Wastewater treatment in constructed wetland: system design, removal process and treatment performance. En constructed wetlands for water quality improvement (pp 9–22). Editado por G. Moshiri, CRC Press Inc Boca de Raton, FL. U.S.A.

    Google Scholar 

  44. Brix H (1994) Use of constructed wetlands in water pollution control: historical development, present status, and future perspectives. Water Sci Technol 30:209–223

    CAS  Google Scholar 

  45. Miranda-Ríos M, Luna-Pabello VM (2001) Estado del arte y perspectivas de aplicación de los humedales artificiales de flujo horizontal en México. Facultad de Química, UNAM. México, D.F. 121 p

    Google Scholar 

  46. Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35:1–17

    Google Scholar 

  47. Bavor HJ, Roser DJ, Adcock PW (1995) Challenges for the development of advanced constructed wetlands technology. Water Sci Technol 32(3):13–20

    CAS  Google Scholar 

  48. Greenway M, Simpson JS (1996) Artificial wetlands for wastewater treatment, water reuse and wildlife in Queens Land, Australia. Water Sci Technol 33(10–11):221–229

    CAS  Google Scholar 

  49. Greenway M (1997) Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Sci Technol 35(5):135–142

    CAS  Google Scholar 

  50. Nitisoravut S, Klomjek P (2005) Inhibition kinetics of salt-affected wetlands for municipal wastewater treatment. Water Res 39:4413–4419

    CAS  Google Scholar 

  51. Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    CAS  Google Scholar 

  52. Calheiros CSC, Duque AF, Moura A, Henriques IS, Correia A, Rangel AOSS, Castro PML (2009) Substrate effect on bacterial communities from constructed wetlands planted with Typha latifolia treating industrial wastewater. Ecol Eng. doi:10.1016/j.ecoleng.2008.11.010

  53. Tchobanoglous G, Schroeder E (1985) Water quality. Addison Wesley Pub Co, Reading

    Google Scholar 

  54. Brix H, Arias CA (2005) The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: new Danish guidelines. Ecol Eng 25:491–500

    Google Scholar 

  55. Mitsch WJ, Jørgensen SE (1989) Ecological engineering: an introduction to ecotechnology. Wiley, New York, p 472

    Google Scholar 

  56. Mitsch WJ, Jørgensen SE (2004) Ecological engineering and ecosystem restoration. Wiley, New York, p 411

    Google Scholar 

  57. Gray S, Kinross J, Read P, Marland A (2000) The nutrient assimilative capacity of Mareal as a substrate for waste treatment. Water Res 34(8):2183–2190

    CAS  Google Scholar 

  58. Kickuth R (1970) Ökochemische Leistungen höherer Pflanzen. Naturwissenschaften 57:55–61

    CAS  Google Scholar 

  59. Kickuth R (1984) Das Wurzelraumverfahren in der Praxis. Landschaft Stadt 16:145–153

    Google Scholar 

  60. Seidel K (1966) Reinigung von Gewassern durch hohere Pflanzen. Naturwiss 53:289–297

    CAS  Google Scholar 

  61. Griffin P (2003) Ten years experience of treating all flows from combined sewerage systems using package plant and constructed wetland combinations. Water Sci Technol 48(11–12):93–99

    CAS  Google Scholar 

  62. Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis Publishers/CRC Press, Boca Raton, 893

    Google Scholar 

  63. Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, Heidelberg/Berlin, p 566

    Google Scholar 

  64. Llagas-Chafloque WA, Guadalupe-Gómez E (2006) Diseño de humedales artificiales para el tratamiento de aguas residuales en la UNMSM. Rev Inst Inv 15(17):85–96

    Google Scholar 

  65. Rousseau DPL, Vanrolleghem PA, De Pauw N (2004) Model-based design of horizontal subsurface flow constructed treatment wetlands: a review. Water Res 38:1484–1493

    CAS  Google Scholar 

  66. Rousseau DPL, Lesage E, Story A, Vanrollegheme PA, De Pauw N (2008) Constructed wetlands for water reclamation. Desalination 218:181–189

    CAS  Google Scholar 

  67. Kadlec RH, Wallace SD (2008) Treatment wetlands, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  68. Wittgren HB, Maehlum T (1997) Wastewater treatment wetlands in cold climates. Water Sci Technol 35(5):45–53

    CAS  Google Scholar 

  69. Scholz M, Lee BH (2005) Constructed wetlands: a review. Int J Environ Stud 62:421–447

    Google Scholar 

  70. Truu M, Juhanson J, Truu J (2009) Microbial biomass, activity and community composition in constructed wetlands. Sci Total Environ. Stoten-11035; No. of Pages 14

    Google Scholar 

  71. Kickuth R (1977) Degradation and incorporation of nutrients from rural wastewaters by plant hydrosphere under limnic conditions. In: Utilization of manure by land spreading (pp 335–343). Comm. Europ. Commun., EUR 5672e, London

    Google Scholar 

  72. Kickuth R (1978) Elimination gelöster Laststoffe durch Röhrichtbestände. Arbeiten des Deutschen Fischereiverbandes 25:57–70

    Google Scholar 

  73. Kickuth R (1981) Abwasserreinigung in Mosaikmatritzen aus aeroben and anaeroben Teilbezirken. In: Moser F (ed) Grundlagen der Abwasserreinigung. Verlag Oldenburg, Munchen/Wien, pp 639–665

    Google Scholar 

  74. Del Bubba M, Lepri L, Cincinelli A, Griffini O, Tabani F (2000) Linear alkylbenzenesulfonates (LAS) removal in a pilot submerged horizontal flow constructed wetland. In: Proceedings of the 7th international conference on wetland systems for water pollution control (pp 919–925). University of Florida, Gainesville.

    Google Scholar 

  75. Huang Y, Latorre A, Barcelo D, Garcia J, Aguirre P, Mujeriego R, Bayona JM (2004) Factors affecting linear alkylbenzene sulfonates removal in subsurface flow constructed wetlands. Environ Sci Technol 38:2657–2663

    CAS  Google Scholar 

  76. Orozco CE, Cruzi AM, Rodríguez MA, Pohlan AJ (2006) Humedal subsuperficial de flujo vertical como sistema de depuración terciaria en el proceso de beneficiado de café. Higiene y Sanidad Ambiental 6:190–196

    Google Scholar 

  77. Paing J, Voisin J (2005) Vertical flow constructed wetlands for municipal wastewater and septage treatment in French rural area. Water Sci Technol 51:145–155

    CAS  Google Scholar 

  78. Tanner CC, Kadlec RH (2003) Oxygen flux implications of observed nitrogen removal rates in subsurface-flow treatment wetlands. Water Sci Technol 48(5):191–198

    CAS  Google Scholar 

  79. Yalcuk A, Ugurlu A (2009) Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresour Technol 100:2521–2526

    CAS  Google Scholar 

  80. Brix H (1987) Treatment of wastewater in the rhizosphere of wetland plants the root zone method. Water Sci Technol 19:107–118

    CAS  Google Scholar 

  81. Cooper PF, Job GD, Green MB, Shutes RBE (1996) Reed beds and constructed wetlands for wastewater treatment. WRc Publications, Medmenham/Marlow

    Google Scholar 

  82. Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper P, Haberl R (2000) Constructed wetlands for pollution control: processes, performance, design and operation. IWA specialist group on use of macrophytes in water pollution control. Scientific and technical report no. 8. IWA Publishing, London

    Google Scholar 

  83. Vymazal J (2005) Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol Eng 25:478–490

    Google Scholar 

  84. Vymazal J, Sven EJ, Brian F (1998) Constructed wetlands, sub-surface flow. Encyclopedia of ecology. Academic, Oxford, pp 748–764

    Google Scholar 

  85. Picard C, Fraser HL, Steer D (2005) The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresour Technol 96:1039–1047

    CAS  Google Scholar 

  86. Gao J, Liu L, Liu X, Lu J, Zhou H, Huang S, Wang Z, Spear PA (2008) Occurrence and distribution of organochlorine pesticides lindane, p, p′-DDT, and heptachlor epoxide in surface water of China. Environ Int 34:1097–1103

    CAS  Google Scholar 

  87. Simonit S, Cattaneo F, Perrings C (2005) Modelling the hydrological externalities of agriculture in wetlands: the case of rice in Esteros del Iberà. Argent Ecol Mod 186:123–141

    Google Scholar 

  88. Miglioranzaa KSB, Morenoa JEA, Morenoa VJ (2004) Organochlorine pesticides sequestered in the aquatic macrophyte Schoenoplectus californicus (C.A. Meyer) Soják from a shallow lake in Argentina. Water Res 38:1765–1772

    Google Scholar 

  89. Sarkar SK, Bhattacharya BD, Bhattacharya A, Chatterjee M, Alam A, Satpathy KK, Jonathan MP (2008) Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: an overview. Environ Int 34:1062–1071

    CAS  Google Scholar 

  90. Dabrowski JM, Schulz R (2003) Predicted and measured levels of azinphos-methyl in the Lourens river, South Africa: comparison of runoff and spray drift. Environ Toxicol Chem 22:494–500

    CAS  Google Scholar 

  91. Dabrowski JM, Bollen A, Bennett ER, Schulz R (2005) Pesticide interception by emergent aquatic macrophytes: potential to mitigate spray-drift input in agricultural streams. Agric Ecosyst Environ 111:340–348

    CAS  Google Scholar 

  92. Laabs V, Wehrhan A, Pinto A, Dores E, Amelung W (2007) Pesticide fate in tropical wetlands of Brazil: an aquatic microcosm study under semi-field conditions. Chemosphere 67:975–989

    CAS  Google Scholar 

  93. Calheiros CSC, Rangel AOSS, Castro PML (2007) Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res 41(8):1790–1798

    CAS  Google Scholar 

  94. Kucuk OS, Sengul F, Kapdan IK (2003) Removal of ammonia from tannery effluents in a reed bed constructed wetland. Water Sci Technol 48(11–12):179–186

    CAS  Google Scholar 

  95. Dotro G, Fitch M, Larsen D, Palazolo P (2006) Treatment of chromium-bearing wastewaters from tannery operations with constructed wetlands. In: Proceedings of the 10th international conference on wetland systems for water pollution control, MAOTDR 2006 (pp 1725–1733). Lisbon, Portugal.

    Google Scholar 

  96. Calheiros CSC, Rangel AOSS, Castro PML (2008) Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation. Bioresour Technol 99(15):6866–6877

    CAS  Google Scholar 

  97. Aguilar JRP, Cabriales JJP, Vega MM (2008) Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery. Int J Phytoremediation 10:359–370

    CAS  Google Scholar 

  98. Vrhovsek D, Kukanja V, Bulc T (1996) Constructed wetland (CW) for industrial waste water treatment. Water Res 30:2287–2292

    CAS  Google Scholar 

  99. De Zeeuw W, Heijnen G, De Vries J (1990) Reed bed treatment as a wastewater (post) treatment alternative in the potato starch industry. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, Oxford, pp 551–553

    Google Scholar 

  100. White KD (1994) Enhancement of nitrogen removal in subsurface-flow constructed wetlands by employing a 2-stage configuration, an unsaturated zone, and recirculation. In: Proceedings of the 4th international conference on wetland systems for water pollution control, ICWS’94 Secretariat, Guangzhou, P.R. China (pp 219–229)

    Google Scholar 

  101. Wallace S (2002) Treatment of cheese-processing waste using subsurface-flow wetlands. In: Nehring KW, Brauning SE (eds) Wetlands and remediation II. Battelle, Columbus, pp 197–203

    Google Scholar 

  102. Mantovi P, Piccinni S, Lina F, Marmiroli M, Marmiroli N (2007) Treating wastewaters from cheese productions in H-SSF constructed wetlands. In: Borin M, Bacelle S (eds) Proceedings of the international conference on multi functions of wetland systems (pp 72–73). P.A.N. s.r.l., Padova, Italy

    Google Scholar 

  103. Bojcevska H, Tonderski K (2007) Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. Ecol Eng 29:66–76

    Google Scholar 

  104. Prochaska CA, Zouboulis AI, Eskridge KM (2007) Performance of pilot-scale vertical-flow constructed wetlands, as affected by season, substrate, hydraulic load and frequency of application of simulated urban sewage. Ecol Eng 31:57–66

    Google Scholar 

  105. Holland JF, Martin JF, Granata T, Bouchard V, Quigley M, Brown L (2004) Effects of wetland depth and flow rate on residence time distribution characteristics. Ecol Eng 23:189–203

    Google Scholar 

  106. Kjellin J, Worman A, Johansson H, Lindahl A (2007) Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden. Adv Water Resour 30:838–850

    Google Scholar 

  107. Jaeken P, Debaer C (2005) Risk of water contamination by plant protection products (PPP) during pre- and post treatment operations. Annu Rev Agric Eng 4:93–114

    Google Scholar 

  108. Kreuger J, Nilsson E (2001) Catchment scale risk-mitigation experiences key issues for reducing pesticide transport to surface waters. In: Pesticide behaviour in soil and water, vol. 78. BCPC symposium proceedings (pp 319–324)

    Google Scholar 

  109. Rose MT, Sanchez-Bayo F, Crossan AN, Kennedy IR (2006) Pesticide removal from cotton farm tailwater by a pilot-scale ponded wetland. Chemosphere 63:1849–1858

    CAS  Google Scholar 

  110. Schulz R, Moore MT, Bennett ER, Farris JL, Smith S, Cooper CM (2003) Methyl parathion toxicity in vegetated and nonvegetated wetland mesocosms. Environ Toxicol Chem 22:1262–1268

    CAS  Google Scholar 

  111. Lin T, Wen Y, Jiang L, Li J, Yang S, Zhou Q (2008) Study of atrazine degradation in subsurface flow constructed wetland under different salinity. Chemosphere 72:122–128

    CAS  Google Scholar 

  112. Moore MT, Cooper CM, Smith S, Cullum RF, Knight SS, Locke MA, Bennett ER (2009) Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland. Environ Pollut 157:250–256

    CAS  Google Scholar 

  113. Matamoros V, Puigagut J, García J, Bayona JM (2007) Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: a preliminary screening. Chemosphere 69:1374–1380

    CAS  Google Scholar 

  114. Runes HB, Jenkins JJ, Moore JA, Bottomley PJ, Wilson BD (2003) Treatment of atrazine in nursery irrigation runoff by a constructed wetland. Water Res 37:539–550

    CAS  Google Scholar 

  115. Bouldin JL, Farris JL, Moore MT, Smith S, Stephens WW, Cooper CM (2005) Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms. Environ Toxicol 20:487–498

    CAS  Google Scholar 

  116. Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33:419–448

    CAS  Google Scholar 

  117. Schulz R, Peall SKC (2001) Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River Catchment, South Africa. Environ Sci Technol 35:422–426

    CAS  Google Scholar 

  118. Warren CS, Mackay D, Bahadur NP, Boocock DGB (2002) A suite of multisegment fugacity models describing the fate of organic contaminants in aquatic systems: application to the Rihand Reservoir, India. Water Res 36:4341–4355

    CAS  Google Scholar 

  119. Moore MT, Rodgers JH Jr, Smith S Jr, Cooper CM (2001) Mitigation of metolachlor-associated agricultural runoff using constructed wetlands in Mississippi, USA. Agric Ecosyst Environ 84:169–176

    CAS  Google Scholar 

  120. Anderson KL, Kevin A, Wheeler KA, Robinson JB, Tuovinen OH (2002) Atrazine mineralization potential in two wetlands. Water Res 36:4785–4794

    CAS  Google Scholar 

  121. FAO (1993) Pesticide residue in food. Evaluations part I residues FAO. Plant production and protection paper. 124,351

    Google Scholar 

  122. Kantawanichkul S, Wara-Aswapati S (2005) LAS removal by a horizontal flow constructed wetland in tropical climate. In: Vymazal J (ed) Natural and constructed wetlands. Nutrients, metals and management. Backhuys Publishers, Leiden, pp 261–270

    Google Scholar 

  123. Knight RL, Kadlec RH, Harry M (1999) The use of treatment wetlands for petroleum industry effluents. Environ Sci Technol 33:973–980

    CAS  Google Scholar 

  124. Yang L, Hu CC (2005) Treatments of oil-refinery and steel-mill wastewaters by mesocosm constructed wetland systems. Water Sci Technol 51(9):157–164

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank PAPIME (PE205706) and PAPIIT (IN107209) for their financial support given to this research work in wetlands, as well as to DGAPA-UNAM for the Postdoctoral Fellowship awarded to Dr. Ortega-Clemente.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alfredo Ortega-Clemente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ortega-Clemente, L.A., Luna-Pabello, V.M., Poggi-Varaldo, H.M. (2013). Constructed Wetlands for Reducing Pesticide Inputs into Surface Water and Groundwater. In: Sharma, S., Sanghi, R. (eds) Wastewater Reuse and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4942-9_13

Download citation

Publish with us

Policies and ethics