Skip to main content
  • 2175 Accesses

Abstract

A concise overview is provided on the use, and potential for further development of omics approaches in crop improvement, food safety assessment, and in nutrigenomics research with specific emphasis on crop plant-based dietary components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeen A, Schnell J, Miki B (2010) Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics 11:69–80

    Article  PubMed  Google Scholar 

  • Ametaj BN, Zebeli Q, Saleem F, Psychogios N, Lewis MJ, Dunn SM, Xia J, Wishart DS (2010) Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 6:583–594

    Article  CAS  Google Scholar 

  • Anttonen MJ, Lehesranta S, Auriola S, Röhlig RM, Engel KH, Kärenlampi SO (2010) Genetic and environmental influence on maize kernel proteome. J Proteome Res 9:6160–6168

    Article  PubMed  CAS  Google Scholar 

  • Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, Beale MH (2006) A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotech J 4:381–392

    Article  CAS  Google Scholar 

  • Barros E, Lezar S, Anttonen MJ, Van Dijk JP, Röhlig RM, Kok EJ, Engel KH (2010) Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnol J 8:436–451

    Article  PubMed  CAS  Google Scholar 

  • Batista R, Oliveira M (2010) Plant natural variability may affect safety assessment data. Regul Toxicol Pharmacol 58:S8–S12

    Article  PubMed  CAS  Google Scholar 

  • Batista R, Saibo N, Lourenço T, Oliveira MM (2008) Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci U S A 105:3640–3645

    Article  PubMed  CAS  Google Scholar 

  • Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR (2006) Trangenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J 4:369–380

    Article  PubMed  CAS  Google Scholar 

  • Berman KH, Harrigan GG, Riordan SG, Nemeth MA, Hanson C, Smith M, Sorbet R, Zhu E, Ridley WP (2009) Compositions of seed, forage, and processed fractions of insect-protected soybean MON 87701 are equivalent to those of conventional soybean. J Agric Food Chem 57:11360–11369

    Article  PubMed  CAS  Google Scholar 

  • Castro C, Manetti M (2007) A multiway approach to analyze metabonomic data: a study of maize seeds development. Anal Biochem 371:194–200

    Article  PubMed  CAS  Google Scholar 

  • Chassy BM (2010) Can omics inform a food safety assessment? Regul Toxicol Pharmacol 58:S62–S70

    Article  PubMed  Google Scholar 

  • Chen H, Bodulovic G, Hall PJ, Moore A, Higgins TJV, Djordjevis MA, Rolfe BG (2009a) Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean α-amylase inhibitor gene. Proteomics 9:4406–4415

    Article  CAS  Google Scholar 

  • Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M (2010) Natural variation explains most transcriptional changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices. Plant Mol Biol 73:349–362

    Article  PubMed  CAS  Google Scholar 

  • Davies HV (2009) A role for ‘‘omics” technologies in food safety assessment. Food Control 21:1601–1611

    Article  Google Scholar 

  • Davis CD, Hord NG (2005) Nutritional ‘omics’ technologies for elucidating the role(s) of bioactive food components in colon cancer prevention. J Nutr 135:2694–2697

    PubMed  CAS  Google Scholar 

  • Dubouzet JG, Ishihara A, Matsuda F, Miyagawa H, Iwata H, Wakasa K (2007) Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit. J Exp Bot 58:3309–3321

    Article  PubMed  CAS  Google Scholar 

  • FAO (2010a) Crop prospects and food situation. No. 4, December 2010

    Google Scholar 

  • FAO (2010b) The state of Food Insecurity in the world. ISBN 978–92-5–106610-2

    Google Scholar 

  • FAO (2011) Crop prospects and food situation. No. 2, June 2011

    Google Scholar 

  • García MC, García B, García-Ruiz C, Gómez A, Cifuentes A, Marina ML (2009) Rapid characterisation of (glyphosate tolerant) transgenic and non-transgenic soybeans using chromatographic protein profiles. Food Chem 113:1212–1217

    Article  Google Scholar 

  • García-Villalba R, León C, Dinelli G, Segura-Carretero A, Fernández-Gutiérrez A, Garcia-Cañas V, Cifuentes A (2008) Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight spectrometry. J Chromatogr A 1195:164–173

    Article  PubMed  Google Scholar 

  • Gartner T, Steinfath M, Andorf S, Lisec J, Meyer RC, Altmann T, Willmitzer L, Selbig J (2009) Improved heterosis prediction by combining information on DNA and metabolic markers. PLoS ONE 4:e5220

    Article  PubMed  Google Scholar 

  • Gregersen PL, Brich-Pedersen H, Holm PB (2005) A microarray-based comparative analysis of gene expression profiles during grain development in transgenic and wild type wheat. Transgenic Res 14:887–905

    Article  PubMed  CAS  Google Scholar 

  • Hall RD, Brouwer ID, Fitzgerald MA (2008) Plant metabolomics and its potential application for human nutrition. Physiol Plant 132:162–175

    PubMed  CAS  Google Scholar 

  • Harrigan GG, Glenn KC, Ridley WP (2010) Assessing the natural variability in crop composition. Regul Toxicol Pharmacol 58:S13–S20

    Article  PubMed  Google Scholar 

  • Herman RA, Phillips AM, Collins RA, Tagliani LA, Clauseen FA, Graham CD, Bickers BL, Harris TA, Prochaska LM (2004) Compositional equivalency of Cry1F corn event TC6275 and conventional corn (Zea mays L.). J Agric Food Chem 52:2726–2734

    Article  PubMed  CAS  Google Scholar 

  • Herman RA, Storer NP, Phillips AM, Prochaska LM, Windles P (2007) Compositional assessment of event DAS-59122-7 maize using substantial equivalence. Regul Toxicol Pharmacol 47:37–47

    Article  PubMed  CAS  Google Scholar 

  • HESI (2010) HESI workshop on evaluating biological variation in non-transgenic crops. Regul Toxicol Pharmacol 58 (special supplement)

    Google Scholar 

  • ILSI (2004) Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology. Compr Rev Food Sci Food Saf 3:35–104

    Article  Google Scholar 

  • ILSI (2008) Recent developments in the safety and nutritional assessment of nutritionally improved foods and feeds. Comp Rev in Food Sci Food Saf 7:50–113

    Article  Google Scholar 

  • Ishihara A, Matsuda F, Miyagawa H, Wakasa K (2007) Metabolomics for metabolically manipulated plants: effects of tryptophan overproduction. Metabolomics 3:319–334

    Article  CAS  Google Scholar 

  • Islam N, Campbell PM, Higgins TJV, Hirano H, Akhurst RJ (2009) Transgenic peas expressing an alpha-amylase inhibitor gene from beans show altered expression and modification of endogenous proteins. Electrophoresis 30:1863–1868

    Article  PubMed  CAS  Google Scholar 

  • Jiao Z, Si XX, Li GK, Zhang ZM, Xu XP (2010) Unintended compositional changes in transgenic rice seeds (Oryza sativa L.) studied by spectral and chromatographic analysis coupled with chemometrics methods. J Agric Food Chem 58:1746–1754

    Article  PubMed  CAS  Google Scholar 

  • Kato Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    Article  Google Scholar 

  • Kato H (2008) Nutrigenomics: the cutting edge and Asian perspectives. Asia Pac J Clin Nutr 17:S12–S15.

    Google Scholar 

  • Kogel KH, Voll LM, Schäfer P, Jansen C, Wu Y, Langen G, Imani J, Hofmann J, Schmiedl A, Sonnewald S, von Wettstein D, Cook RJ, Sonnewald U (2010) Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proc Nat Acad Sci U S A 107:6198–6203

    Article  CAS  Google Scholar 

  • Kristensen C, Morant M, Olsen CE, Ekstrøm CT, Galbraith DW, Møller BL, Bak S (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects of the metabolome and transcriptome. Proc Natl Acad Sci U S A 102:1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Kussmann M, Rezzi S, Daniel H (2008) Profiling techniques in nutrition and health research. Curr Opin Biotech 19:83–99

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40

    Article  PubMed  CAS  Google Scholar 

  • Leon C, Rodriguez-Meizoso I, Lucio M, Garcia-Cañas V, Ibañez E, Schmitt-Kopplin P, Cifuentes A (2009) Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. J Chromatogr A 1216:7314–7323

    Article  PubMed  CAS  Google Scholar 

  • Levandi T, Leon C, Kaljurand M, Garcia-Canas V, Cifuentes A (2008) Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize. Anal Chem 80:6329–6335

    Article  PubMed  CAS  Google Scholar 

  • Long M, Millar DJ, Kimura Y, Donovan G, Rees J, Fraser PD, Bramley PM, Bolwell GP (2006) Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato: identification of a high antioxidant fruit line. Phytochemistry 67:1750–1757

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Ning T, Sun Y, Zhu J, Zhu Y, Lin Q, Yang D (2009) Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF. J Proteome Res 8:829–837

    Article  PubMed  CAS  Google Scholar 

  • Manetti C, Bianchetti C, Bizzarri M, Casciani L, Castro C, D’Ascenzo G, Delfini M, Di Cocco ME, Laganà A, Miccheli A, Motto M, Conti F (2004) NMR-based metabonomic study of transgenic maize. Phytochemistry 65:3187–3198

    Article  PubMed  CAS  Google Scholar 

  • Manetti C, Bianchetti C, Casciani L, Castro C, Di Cocco ME, Miccheli A, Motto M, Conti F (2006) A metabonomic study of transgenic maize (Zea mays) seeds revealed variations is osmolytes and branched amino acids. J Exp Bot 57:2613–2625

    Article  PubMed  CAS  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Törjek O, Fiehn O, Eckardt Ä, Willmitzer L, Selbig J, Altmann T (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:4759–4764

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523

    Article  PubMed  CAS  Google Scholar 

  • Oberdoerfer RB, Shillito RD, De Beuckeleer M, Mitten DH (2005) Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart. J Agric Food Chem 53:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Ovesná J, Slabý O, Toussaint O, Kodícek M, Marsík P, Pouchová V, Vaněk T (2008) High throughput ‘omics’ approaches to assess the effects of phytochemicals in human health studies. Brit J Nutr 99:ES127–ES134

    Article  PubMed  Google Scholar 

  • Piccioni F, Capitani D, Zolla L, Mannina L (2009) NMR metabolic profiling of transgenic maize with the Cry1A(b) gene. J Agric Food Chem 57:6041–6049

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Lv J, Wang T, Li L, Peng Y, Qu LJ (2009a) A comparative proteomics approach to detect unintended effects in transgenic Arabidopsis. J Genet Genomics 36:629–639

    Article  CAS  Google Scholar 

  • Ren Y, Wang T, Peng Y, Xia B, Qu LJ (2009b) Distinguishing transgenic from non-transgenic Arabidopsis plants by 1H NMR-based metabolic fingerprinting. J Genet Genomics 36:621–628

    Article  CAS  Google Scholar 

  • Reubelt MC, Lipp M, Reynolds TL, Schmuke JJ, Astwood JD, DellaPenna D, Engel KH, Jany KD (2006) Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 3. Assessing unintended effects. J Agric Food Chem 54:2169–2177

    Article  Google Scholar 

  • Rezzi S, Ramadan Z, Fay LB, Kochhar S (2007) Nutritional metabonomics: applications and perspectives. J Proteome Res 6:513–525

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Nogales JM, Cifuentes A, García MC, Marina, ML (2007) Characterization of protein fractions from Bt-transgenic and non-transgenic maize varieties using perfusion and monolithis RP-HPLC. Maize differentiation by multivariate analysis. J Agric Food Chem 55:3835–3842

    Article  PubMed  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AM, Sahota R, Pope DS, Lawrence TS, Belton MP, Rott ME (2008) Detection of genetically modified canola using multiplex PCR coupled with oligonucleotide microarray hybridization. J Agric Food Chem 56:6791–6800

    Article  PubMed  CAS  Google Scholar 

  • Scossa F, Laudencia-Chinqcuanco D, Anderson OD, Vensel WH, Lafiandra D, D’Ovidio R, Masci S (2008) Comparative proteomic and transcriptomic profiling of a bread wheat cultivar and its derived transgenic lines overexpressing a low molecular weight glutenin subunit gene in the endosperm. Proteomics 8:2948–2966

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, Anderson M, Kumar A, Zhang Y, Giblin EM, Abrams SR, Zaharia LI, Taylor DC, Fobert PR (2008) Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genomics 9:619–636

    Article  PubMed  Google Scholar 

  • Shewry PR, Baudo M, Lovegrove A, Powers S, Napier JA, Ward JL, Baker JM, Beale MH (2007) Are GM and conventionally bred cereals really different? Trends Food Sci Technol 18:201–209

    Article  CAS  Google Scholar 

  • Shyur LF, Yang NS (2008) Metabolomics for phytomedicine research and drug development. Curr Opin Chem Biol 12:66–71

    Article  PubMed  CAS  Google Scholar 

  • Skogerson K, Harrigan GG, Reynolds TL, Halls SC, Ruebelt M, Iandolino A, Pandravada A, Glenn KC, Fiehn O (2010) Impact of genetics and environment on the metabolite composition of maize grain. J Agric Food Chem 58:3600–3610

    Article  PubMed  CAS  Google Scholar 

  • Stamova BS, Roessner U, Suren S, Laudencia-Chingcuanco D, Bacic A, Beckles DM (2009) Metabolic profiling of transgenic wheat over-expressing the high molecular-weight Dx5 glutenin subunit. Metabolomics 5:239–252

    Google Scholar 

  • Steinfath M, Strehmel N, Peters R, Schauer N, Groth D, Hummel J, Steup M, Selbig J, Kopka J, Geigenberger P, van Dongen JT (2010) Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnol J 8:900–911

    Article  PubMed  CAS  Google Scholar 

  • Stierum R, Heijne W, Kienhuis A, van Ommen B, Groten J (2005) Toxicogenomics concepts and applications to study hepatic effects of food additives and chemicals. Toxicol Appl Pharmacol 207:S179–S188

    Article  CAS  Google Scholar 

  • van Dijk JP, Leifert C, Barros E, Kok EJ (2010) Gene expression profiling for food safety assessment: examples in potato and maize. Regul Toxicol Pharmacol 58:S21–S25

    Article  CAS  Google Scholar 

  • Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terakawa T, Miyagawa H (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57:3069–3078

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yap Y, Wei D, Chen G, Chen F (2007) Novel omics technologies in nutrition research. Biotechnol Adv 26:169–176

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Ma C, Xu H, Yuan K, Lu X, Zhu Z, Wu Y, Xu G (2009) Metabolic profiling of transgenic rice with cryIAc and sck genes: an evaluation of unintended effects at metabolic level by using GC-FID and GC-MS. J Chromatogr B 877:725–732

    Article  CAS  Google Scholar 

  • Zolla L, Rinalducci S, Antonioli P, Righetti PG (2008) Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res 7:1850–1861

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davies, H., Shepherd, L. (2012). Integrating Omics in Food Quality and Safety Assessment. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_26

Download citation

Publish with us

Policies and ethics