Skip to main content

Phytoremediation: The Utilization of Plants to Reclaim Polluted Sites

  • Chapter
  • First Online:
Plants and Heavy Metals

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

Abstract

The contamination of water and soil with heavy metals is a serious environmental and health hazard. Phytoremediation is the use of plants to remove pollutants, and this offers an alternative to conventional clean-up methods which rely on excavation or the application of detergents and other chemicals. The ideal plant for phytoremediation should tolerate heavy metals and accumulate them in the aerial tissues, should produce large amounts of biomass rapidly, and should develop a deep and extensive root system. Biotechnology offers the opportunity to genetically engineer plants that tolerate and accumulate large amounts of heavy metals in their shoots or that chemically transform and volatilize them. The uptake of heavy metals into plants can also be enhanced by the microbial community in the rhizosphere, which can stimulate root proliferation and increase metal bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers. Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotechnol 18:213–217

    Article  CAS  Google Scholar 

  • Blaylock MJ (2000) Field demonstrations of phytoremediation of lead contaminated soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 1–12

    Google Scholar 

  • Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99:761–771

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS et al (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60:190–198

    CAS  Google Scholar 

  • Cherian S, Oliveira M (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren M, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  CAS  Google Scholar 

  • de Souza MP, Pilon-Smits EAH, Lytle CM et al (1998) Rate-limiting steps in selenium volatilization by Brassica juncea. Plant Physiol 117:1487–1494

    Article  Google Scholar 

  • De Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  Google Scholar 

  • De Souza MP, Lytle CM, Mulholland MM, Otte ML, Terry N (2000) Selenium assimilation and volatilization from dimethylselenoniopropianate by Indian mustard. Plant Physiol 122:1281–1288

    Article  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol. doi:10.1038/nbt747

    Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  Google Scholar 

  • Dushenkov S, Kapulnik Y (2000) Phytofiltration of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 89–106

    Google Scholar 

  • Eapen S, D’Souza S (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Evans K, Gatehouse J, Lindsay W et al (1992) Expression of the pea metallothionein-like gene PsMTa in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTa function. Plant Mol Biol 20:1019–1028

    Article  CAS  Google Scholar 

  • Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Polati R, Berta G, Vallini G, Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals Cadmium and Zinc and rhizosphere microorganisms. Proteomics 9:4837–4850

    Article  CAS  Google Scholar 

  • Farinati S, DalCorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185:964–978

    Article  CAS  Google Scholar 

  • Farinati S, DalCorso G, Panigati M, Furini A (2011) Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation. J Exp Bot 62:3433–3447

    Article  CAS  Google Scholar 

  • Frey B, Zierold K, Brunner I (2000) Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies—Hebeloma crustuliniforme ectomycorrhizas. Plant Cell Environ 23:1257–1265

    Article  CAS  Google Scholar 

  • Fusco, N. Micheletto L, DalCorso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027

    Google Scholar 

  • Glass DJ (1999) U.S. and international markets for phytoremediation, 1999–2000. D Glass Associates, Needham

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Gong J, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci U S A 100:10118–10123

    Article  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  Google Scholar 

  • Kohler C, Merkle T, Neuhaus G (1999) Characterization of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    Article  CAS  Google Scholar 

  • Korenkov V, Park S, Cheng N et al (2007) Enhanced Cd2+ - selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225:403–411

    Article  CAS  Google Scholar 

  • Krämer U, Talke I, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayón M et al (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  Google Scholar 

  • LeDuc DL, AbdelSamie M, Montes-Bayón M et al (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  CAS  Google Scholar 

  • Li ZS, Lu YP, Zhen RG et al (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc Natl Acad Sci U S A 94:42–47

    Article  CAS  Google Scholar 

  • Martínez M, Bernal P, Almela C et al (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    Article  Google Scholar 

  • Meharg AA, Macnair MR (1992) Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus. Heredity 69:336–341

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2005) Mercury volatilization and phytoextraction from base-metal mine tailings. Environ Pollut 136:341–352

    Article  CAS  Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    Article  CAS  Google Scholar 

  • Peterson AG, Oliver DJ (2006) Leaf-targeted phytochelatin synthase in Arabidopsis thaliana. Plant Physiol Biochem 44:885–892

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pilon-Smits EA, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    Article  CAS  Google Scholar 

  • Pilon-Smits E, Hwang SB, Lytle CM et al (1999) Overexpression of ATP sulfurylase in Brassica juncea leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–132

    Article  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, Sanità di Toppi L, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  CAS  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97:12356–12360

    Article  CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609−617

    Article  CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physio 49:643–668

    CAS  Google Scholar 

  • Sasaki Y, Hayakawa T, Inoue C et al (2006) Generation of mercuryhyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgenic Res 15:615–625

    Article  CAS  Google Scholar 

  • Sauge-Merle S, Cuinè S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  CAS  Google Scholar 

  • Schuurink RC, Shartzer SF, Fath A, Jones RL (1998) Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci U S A 95:1944–1949

    Article  CAS  Google Scholar 

  • Shaw WH, Anderson JW (1972) Purification, properties and substrate specificity of adenosine triphosphate sulphurylase from spinach leaf tissue. Biochem J 127:237–247

    CAS  Google Scholar 

  • Song W, Sohn EJ, Martinoia E, Lee YJ et al (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  CAS  Google Scholar 

  • Talke I, Hanikenne M, Krämer U (2006) Zinc dependent global transcriptional control, transcriptional de-regulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszl et al (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280

    Article  CAS  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE et al (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  Google Scholar 

  • van Huysen T, Abdel-Ghany S, Hale KL et al (2003) Overexpression of cystathionine-g-synthase in Indian mustard enhances selenium volatilization. Planta 218:71–78

    Article  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. Biol Chem 275:31451–31459

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Wernick I, Themelis N (1998) Recycling metals for the environment. Annu Rev Energy Environ 23:465–497

    Article  Google Scholar 

  • Wijnhoven S, Leuven R, Van Der Velde G et al (2007) Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species- and location-specific characteristics. Arch Environ Contam Toxicol 52:603–613

    Article  CAS  Google Scholar 

  • Wojas S, Clemens S, Hennig J, SkÅ‚odowska A, Kopera E, Schat H et al (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 59:2205–2219

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EHA, Tarum AS et al (1999b) Cadmium tolerance and accumulation in Indian mustard is mnhanced by overexpressing γ-Glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Furini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Nesler, A., Furini, A. (2012). Phytoremediation: The Utilization of Plants to Reclaim Polluted Sites. In: Furini, A. (eds) Plants and Heavy Metals. SpringerBriefs in Molecular Science(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4441-7_4

Download citation

Publish with us

Policies and ethics