Skip to main content

Challenges and Advances in Image-Based Geometric Modeling and Mesh Generation

  • Chapter
Image-Based Geometric Modeling and Mesh Generation

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 3))

Abstract

Image-based geometric modeling and mesh generation play a critical role in computational medicine and biology. This paper presents challenges and advances in this area along with a comprehensive computational framework for analysis-suitable geometric modeling and mesh generation, which integrates image processing, geometric modeling, mesh generation and quality improvement with multi-scale analysis at molecular, cellular, tissue and organ scales. The input imaging data are passed through an image-processing module where the image quality is improved. The improved images are then fed to an in-house meshing software, LBIE-Mesher (Level-set Boundary Interior and Exterior Mesher), to construct 2D or 3D finite element meshes. Given geometry or atomic resolution data in the Protein Data Bank (PDB), we first construct volumetric density map using a signed distance function or a summation of Gaussian Kernel functions, and then use LBIE-Mesher to generate various kinds of meshes. Furthermore, the constructed unstructured meshes can be used as control meshes to construct high-order elements such as volumetric T-splines. In addition, a skeleton-based sweeping method is used to generate hexahedral control meshes and solid NURBS (Non-Uniform Rational B-Spline) or cubic Hermite for cardiovascular system. Different from other existing methods, the presented framework supports five important features: multiscale geometric modeling, automatic mesh generation for heterogeneous domains, all-hexahedral mesh generation with sharp feature preservation, robust quality improvement for non-manifold meshes, and high-order element construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajaj C, Wu Q, Xu G (2003) Level set based volumetric anisotropic diffusion. ICES Technical Report 301, University of Texas-Austin

    Google Scholar 

  2. Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Acta Mater 27:351–374

    Google Scholar 

  3. Delaunay BN (1934) Sur la sphére vide. Izv Akad Nauk SSSR, Otd Mat Estestvenn Nauk 7:793–800

    Google Scholar 

  4. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  5. Ju T, Losasso F, Schaefer S, Warren J (2002) Dual contouring of hermite data. ACM Trans Graph 21(3):339–346

    Article  Google Scholar 

  6. Leng J, Zhang Y, Xu G (2011) A novel geometric flow-driven approach for quality improvement of segmented tetrahedral mesh. In: 20th international meshing roundtable, pp 347–364

    Chapter  Google Scholar 

  7. Lo SH (1991) Volume discretization into tetrahedra II. 3D triangulation by advancing front approach. Comput Struct 39:501–511

    Article  MATH  Google Scholar 

  8. Lohner R (1996) Progress in grid generation via the advancing front technique. Eng Comput 12:186–210

    Article  MathSciNet  Google Scholar 

  9. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21(4):163–169

    Article  Google Scholar 

  10. Nygards M (2003) Number of grains necessary to homogenize elastic materials with cubic symmetry. Mech Mater 35:1049–1057

    Article  Google Scholar 

  11. Qian J, Zhang Y (2010) Sharp feature preservation in octree-based all-hexahedral mesh generation for CAD assembly models. In: 19th international meshing roundtable, pp 243–262

    Chapter  Google Scholar 

  12. Qian J, Zhang Y (2011) Dual contouring for domains with topology ambiguity. In: 20th international meshing roundtable, pp 41–60

    Chapter  Google Scholar 

  13. Qian J, Zhang Y, Wang W, Lewis A, Qidwai MAS, Geltmacher A (2010) Quality improvement of non-manifold hexahedral meshes for critical feature determination of microstructure materials. Int J Numer Methods Eng 82(11):1406–1423

    MathSciNet  MATH  Google Scholar 

  14. Schneiders R (1996) A grid-based algorithm for the generation of hexahedral element meshes. Eng Comput 12:168–177

    Article  Google Scholar 

  15. Schneiders R (1996) Refining quadrilateral and hexahedral element meshes. In: 5th international conference on grid generation in computational field simulations, pp 679–688

    Google Scholar 

  16. Shephard MS, Georges MK (1991) Three-dimensional mesh generation by finite octree technique. Int J Numer Methods Eng 32:709–749

    Article  MATH  Google Scholar 

  17. Vavasis SA QMG website. http://www.cs.cornell.edu/home/vavasis/qmg-home.html

  18. Wang W, Zhang Y, Scott MA, Hughes TJR (2011) Converting an unstructured quadrilateral mesh to a standard T-spline surface. Comput Mech 48(4):477–498

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang W, Zhang Y, Xu G, Hughes TJR (2011) Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline. Comput Mech. doi:10.1007/s00466-011-0674-6

    Google Scholar 

  20. Weatherill NP, Hassan O (1994) Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int J Numer Methods Eng 37:2005–2039

    Article  MATH  Google Scholar 

  21. Yu Z, Bajaj C (2002) Image segmentation using gradient vector diffusion and region merging. In: 16th ICPR, vol 2, pp 941–944

    Google Scholar 

  22. Yu Z, Bajaj C (2004) A fast and adaptive algorithm for image contrast enhancement. In: IEEE ICIP, vol 2, pp 1001–1004

    Google Scholar 

  23. Zhang Y, Bajaj C (2006) Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput Methods Appl Mech Eng 195(9–12):942–960

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang Y, Bajaj C, Sohn B-S (2005) 3D finite element meshing from imaging data. Comput Methods Appl Mech Eng 194(48–49):5083–5106

    Article  MATH  Google Scholar 

  25. Zhang Y, Xu G, Bajaj C (2006) Quality meshing of implicit solvation models of biomolecular structures. Comput Aided Geom Des 23(6):510–530

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang Y, Bajaj C, Xu G (2009) Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Commun Numer Methods Eng 25(1):1–18

    Article  MathSciNet  Google Scholar 

  27. Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2010) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196(29–30):2943–2959

    MathSciNet  Google Scholar 

  28. Zhang Y, Hughes TJR, Bajaj C (2010) An automatic 3D mesh generation method for domains with multiple materials. Comput Methods Appl Mech Eng 199(5–8):405–415

    Article  MATH  Google Scholar 

  29. Zhang Y, Wang W, Hughes TJR (2011) Solid T-spline construction from boundary representations for genus-zero geometry. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2012.01.014

    Google Scholar 

Download references

Acknowledgements

The author would like to thank her students, J. Ma, J. Qian and W. Wang, for generating pictures for this paper. This research was supported in part by the ONR-YIP award N00014-10-1-0698, an ONR grant N00014-08-1-0653, an AFOSR grant FA9550-11-1-0346, a NSF/DoD-MRSEC seed grant, a UPMC-HTI gift grant, a SINTEF gift grant from Norway, and a UCSD-subaward.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, Y. (2013). Challenges and Advances in Image-Based Geometric Modeling and Mesh Generation. In: Zhang, Y. (eds) Image-Based Geometric Modeling and Mesh Generation. Lecture Notes in Computational Vision and Biomechanics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4255-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4255-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4254-3

  • Online ISBN: 978-94-007-4255-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics