Skip to main content

Wastewater Treatment with Concomitant Bioenergy Production Using Microbial Fuel Cells

  • Chapter
  • First Online:
Advances in Water Treatment and Pollution Prevention

Abstract

Billions of dollars are spent on wastewater treatment each year, and the worldwide energy crisis makes green technologies increasingly more attractive. Microbial fuel cells (MFCs) can potentially be used to digest organic matter in wastewaters and reduce its solids by up to 90%. MFCs generate electricity by harvesting the electrons donated to the anode from organic carbon oxidation in an anaerobic anodic chamber mediated by bacteria in biofilms. The electrons flow through an external circuit to reach the cathode where they are used to react with oxygen and protons to form water in the cathodic chamber. Instead of using oxygen in the cathodic chamber, which requires expensive catalytic cathodes, alternate oxidants such as nitrate and nitrite in wastewaters can also be used as electron acceptors with a biocathode. It was claimed that MFCs have the potential to reduce power consumption in wastewaters by as much as 50%. By operating MFCs in electrolysis mode, known as microbial electrolysis cells (MECs), biohydrogen can be produced by applying a much lower external voltage than that for the direct water electrolysis. In laboratory investigations, MECs have been used to treat many kinds of hazardous wastes and wastewaters. Recently, there is a growing interest in producing value-added bioproducts from MFCs or MECs, as well as microbial desalination cells. Significant technical hurdles need to be overcome before large-scale MFCs become practical. Recent advances such as genetically engineered, dispersion-deficient microbes that bind tenaciously to an electrode, electrogenic hyperpilated bacteria, new anodic materials, more efficient mediators, and membrane-less MFCs make the feasibility of MFCs for wastewater treatment more promising than ever. This review discusses new advances in MFC operation, design, and optimization for wastewater treatment with concomitant bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heidrich ES, Curtis TP, Dolfing J (2011) Determination of the internal chemical energy of wastewater. Environ Sci Technol 45:827–32

    CAS  Google Scholar 

  2. Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    CAS  Google Scholar 

  3. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    CAS  Google Scholar 

  4. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814

    CAS  Google Scholar 

  5. Min B, Kim J, Oh S, Regan J, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    CAS  Google Scholar 

  6. Lu N, Zhou S, Zhuang L, Zhang J, Ni J (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 43:246–251

    CAS  Google Scholar 

  7. Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880

    CAS  Google Scholar 

  8. Gálvez A, Greenman J, Ieropoulos I (2009) Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresour Technol 100:5085–5091

    Google Scholar 

  9. Greenman J, Gálvez A, Giusti L, Ieropoulos I (2009) Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzym Microb Technol 44:112–119

    CAS  Google Scholar 

  10. Zhang J, Zhao Q, You S, Jiang J, Ren N (2008) Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Sci Technol 57:1017–1021

    CAS  Google Scholar 

  11. Jiang J, Zhao Q, Zhang J, Zhang G, Lee D (2009) Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresour Technol 100:5808–5812

    CAS  Google Scholar 

  12. Jiang J, Zhao Q, Wei L, Wang K (2010) Extracellular biological organic matters in microbial fuel cell using sewage sludge as fuel. Water Res 44:2163–2170

    CAS  Google Scholar 

  13. Jiang XC, Hu JS, Fitzgerald LA, Biffinger JC, Xie P, Ringeisen BR, Lieber CM (2010) Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc Natl Acad Sci 107:16806–16810

    CAS  Google Scholar 

  14. Niessen J, Schröder U, Harnisch F, Scholz F (2005) Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl Microbiol 41:286–290

    CAS  Google Scholar 

  15. Huang L, Logan BE (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80:349–355

    CAS  Google Scholar 

  16. Huang L, Cheng S, Rezaei F, Logan BE (2009) Reducing organic loading in industrial effluents using microbial fuel cells. Environ Technol 30:499–504

    CAS  Google Scholar 

  17. Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781–4786

    CAS  Google Scholar 

  18. Rezaei F, Richard TL, Brennan RA, Logan BE (2007) Substrate-enhanced microbial fuel cells for improve remote power generation from sediment-based system. Environ Sci Technol 41:4053–4058

    CAS  Google Scholar 

  19. Rezaei F, Xing D, Wagner R, Richard T, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75:3673–3678

    CAS  Google Scholar 

  20. Rezaei F, Richard TL, Logan BE (2009) Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid-substrate microbial fuel cells. J Power Sources 192:304–309

    CAS  Google Scholar 

  21. Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu ZT, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97:1398–1407

    CAS  Google Scholar 

  22. Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103:1068–1076

    CAS  Google Scholar 

  23. Rezaei F, Richard TL, Logan BE (2008) Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol Bioeng 101:1163–1169

    CAS  Google Scholar 

  24. Zhang B, Zhao H, Shi C, Zhou S, Ni J (2009) Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. J Chem Technol Biotechnol 84:1780–1786

    CAS  Google Scholar 

  25. Zuo Y, Maness P, Logan BE (2006) Electricity production from steam-exploded corn stover biomass. Energy Fuel 20:1716–1721

    CAS  Google Scholar 

  26. Wang X, Feng Y, Wang H, Ou Y, Yu Y, Ren N, Li N, Wang E, Lee H, Logan BE (2009) Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol 43:6088–6093

    CAS  Google Scholar 

  27. Zang G, Sheng G, Tong Z, Liu X, Teng S, Li W, Yu H (2010) Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environ Sci Technol 44:2715–2720

    CAS  Google Scholar 

  28. Catal T, Cysneiros D, O’Flaherty V, Leech D (2011) Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage. Bioresour Technol 102:404–410

    CAS  Google Scholar 

  29. Catal T, Xu S, Li K, Bermek H, Liu H (2008) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron 24:849–854

    CAS  Google Scholar 

  30. Huang L, Logan BE (2008) Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Appl Microbiol Biotechnol 80:655–664

    CAS  Google Scholar 

  31. Huang L, Zeng J, Angelidaki I (2008) Electricity production from xylose using a mediator-less microbial fuel cell. Bioresour Technol 99:4178–4184

    CAS  Google Scholar 

  32. Catal T, Fan YZ, Li KC, Bermek H, Liu H (2008) Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells. J Power Sources 180:162–166

    CAS  Google Scholar 

  33. Luo Y, Liu G, Zhang R, Zhang C (2010) Power generation from furfural using the microbial fuel cell. J Power Sources 195:190–194

    CAS  Google Scholar 

  34. Cheng S, Kiely P, Logan BE (2011) Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Bioresour Technol 102:367–371

    CAS  Google Scholar 

  35. Zhang C, Li M, Liu G, Luo H, Zhang R (2009) Pyridine degradation in the microbial fuel cells. J Hazard Mater 172:465–471

    CAS  Google Scholar 

  36. Luo Y, Zhang R, Liu G, Li J, Li M, Zhang C (2010) Electricity generation from indole and microbial community analysis in the microbial fuel cell. J Hazard Mater 176:759–764

    CAS  Google Scholar 

  37. Zhang C, Liu G, Zhang R, Luo H (2010) Electricity production from and biodegradation of quinoline in the microbial fuel cell. J Environ Sci Health Part A 45:250–256

    CAS  Google Scholar 

  38. Huang L, Yang X, Quan X, Chen J, Yang F (2010) A microbial fuel cell-electro-oxidation system for coking wastewater treatment and bioelectricity generation. J Chem Technol Biotechnol 85:621–627

    CAS  Google Scholar 

  39. He Z, Kan J, Wang Y, Huang Y, Mansfeld F, Nealson KH (2009) Electricity production coupled to ammonium in a microbial fuel cell. Environ Sci Technol 43:3391–3397

    CAS  Google Scholar 

  40. Kim JR, Zuo Y, Regan JM, Logan BE (2008) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99:1120–1127

    CAS  Google Scholar 

  41. Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2011) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio 1:e00190–10

    Google Scholar 

  42. Raghavulu SV, Goud RK, Sarma PN, Mohan SV (2011) Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load. Bioresour Technol 102:2751–2757

    CAS  Google Scholar 

  43. Finch AS, Mackie TD, Sund CJ, Sumner JJ (2011) Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. Bioresour Technol 102:312–315

    CAS  Google Scholar 

  44. Rismani-Yazdi H, Christy AD, Carver SM, Yu Z, Dehority BA, Tuovinen OH (2011) Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresour Technol 102:278–283

    CAS  Google Scholar 

  45. Katuri KP, Scott K, Head IM, Picioreanu C, Curtis TP (2011) Microbial fuel cells meet with external resistance. Bioresour Technol 102:2758–2766

    CAS  Google Scholar 

  46. Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41:2921–2940

    CAS  Google Scholar 

  47. Picioreanu C, Katuri KP, Head IM, van Loosdrecht MCM, Scott K (2008) Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci Technol 57:965–971

    CAS  Google Scholar 

  48. Jung S, Regan JM (2011) Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells. Appl Environ Microbiol 77:564–571

    CAS  Google Scholar 

  49. Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501–1510

    CAS  Google Scholar 

  50. Freguia S, Rabaey K, Yuan Z, Keller J (2008) Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42:7937–7943

    CAS  Google Scholar 

  51. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzym Microb Technol 30:145–152

    CAS  Google Scholar 

  52. Liu H, Cheng SA, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    CAS  Google Scholar 

  53. Wang YF, Cheng SS, Tsujimura S, Ikeda T, Kano K (2006) Escherichia coli-catalyzed bioelectrochemical oxidation of acetate in the presence of mediators. Bioelectrochemistry 69:74–81

    CAS  Google Scholar 

  54. Biffinger JC, Byrd JN, Dudley BL, Ringeisen BR (2008) Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron 23:820–826

    CAS  Google Scholar 

  55. Li SL, Freguiab S, Liu SM, Cheng SS, Tsujimura S, Shirai O, Kano K (2010) Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes. Biosens Bioelectron 25:2651–2656

    CAS  Google Scholar 

  56. Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y (2011) Three-dimensional carbon nanotube textile anode for high-performance microbial fuel cells. Nano Lett 11:291–296

    CAS  Google Scholar 

  57. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    CAS  Google Scholar 

  58. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267

    CAS  Google Scholar 

  59. Cheng S, Liu H, Logan BE (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494

    CAS  Google Scholar 

  60. Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432

    CAS  Google Scholar 

  61. Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    CAS  Google Scholar 

  62. Liu H, Cheng S, Huang L, Logan BE (2008) Scale-up of membrane-free single-chamber microbial fuel cells. J Power Sources 179:274–279

    CAS  Google Scholar 

  63. Zeng L, Zhang L, Li W, Zhao S, Lei J, Zhou Z (2010) Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae. Biosens Bioelectron 25:2696–2700

    CAS  Google Scholar 

  64. Dewan A, Beyenal H, Lewandowski Z (2008) Scaling up microbial fuel cells. Environ Sci Technol 42:7643–7648

    CAS  Google Scholar 

  65. Larrosa-Guerrero A, Scott K, Katuri KP, Godinez C, Head IM, Curtis T (2010) Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities. Appl Microbiol Biotechnol 87:1699–1713

    CAS  Google Scholar 

  66. Larrosa-Guerrero A, Scott K, Head IM, Mateo F, Ginesta A, Godinez C (2010) Effect of temperature on the performance of microbial fuel cells. Fuel 89:3985–3994

    CAS  Google Scholar 

  67. Tang X, Guo K, Li H, Du Z, Tian J (2011) Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour Technol 102:3558–3560

    CAS  Google Scholar 

  68. Lowy DA, Tender LM (2008) Harvesting energy from the marine sediment–water interface III. Kinetic activity of quinone- and antimony-based anode materials. J Power Sources 185:70–75

    CAS  Google Scholar 

  69. Saito T, Mehanna M, Wang X, Cusick RD, Feng Y, Hickner MA, Logan BE (2011) Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresour Technol 102:395–398

    CAS  Google Scholar 

  70. Tsai HY, Wu CC, Lee CY, Shih EP (2009) Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Sources 194:199–205

    CAS  Google Scholar 

  71. Peng L, You S, Wang J (2010) Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens Bioelectron 25:1248–1251

    CAS  Google Scholar 

  72. Mottaghitalab V, Spinks GM, Wallace GG (2005) The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synth Met 152:77–80

    CAS  Google Scholar 

  73. Qiao Y, Li CM, Bao S, Bao Q (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84

    CAS  Google Scholar 

  74. Zou Y, Pisciotta J, Baskakov IV (2010) Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells. Bioelectrochemistry 79:50–56

    CAS  Google Scholar 

  75. Yuan SJ, Sheng GP, Li WW, Lin ZQ, Zeng RJ, Tong ZH, Yu HQ (2010) Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environ Sci Technol 44:5575–5580

    CAS  Google Scholar 

  76. Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    Google Scholar 

  77. Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78:409–418

    CAS  Google Scholar 

  78. Yi H, Nevin KP, Kim BC, Franks AE, Klimes A, Tender LM, Lovley DR (2009) Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503

    CAS  Google Scholar 

  79. Wang X, Feng Y, Ren N, Wang H, Lee H, Li N (2009) Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochim Acta 54:1109–1114

    CAS  Google Scholar 

  80. Wei J, Liang P, Cao X, Huang X (2010) A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ Sci Technol 44:3187–3191

    CAS  Google Scholar 

  81. Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR (2006) Characterization of metabolism in the Fe (III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72:1558–1568

    CAS  Google Scholar 

  82. Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34:181–186

    CAS  Google Scholar 

  83. Walczak MM, Dryer DA, Jacobson DD, Foss MG, Flynn NT (1997) pH-dependent redox couple: illustrating the Nernst equation using cyclic voltammetry. Environ Sci Technol 74:1195–1197

    CAS  Google Scholar 

  84. Busalmen JP, De Sanchez SR (2005) Electrochemical polarization-induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552). Appl Environ Microbiol 71:6235–6240

    CAS  Google Scholar 

  85. Luo Q, Wang H, Zhang X, Qian Y (2005) Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl Environ Microbiol 71:423–427

    CAS  Google Scholar 

  86. He Z, Huang Y, Manohar AK, Mansfeld F (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74:78–82

    CAS  Google Scholar 

  87. Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496

    Google Scholar 

  88. Fan YZ, Hu HQ, Liu H (2007) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41:8154–8158

    CAS  Google Scholar 

  89. Fornero JJ, Rosenbaum M, Cotta MA, Angenent LT (2010) Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ Sci Technol 44:2728–2734

    CAS  Google Scholar 

  90. Torres CI, Lee HS, Rittmann BE (2008) Carbonate species as OH-carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ Sci Technol 42:8773–8777

    CAS  Google Scholar 

  91. Cheng KY, Ho G, Cord-ruwisch R (2010) Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ Sci Technol 44:518–525

    CAS  Google Scholar 

  92. Freguia S, Rabaey K, Yuan Z, Keller J (2008) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42:1387–1396

    CAS  Google Scholar 

  93. Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Solar energy powered microbial fuel cell with a reversible bioelectrode. Environ Sci Technol 44:532–537

    CAS  Google Scholar 

  94. Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024

    CAS  Google Scholar 

  95. Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101:469–475

    CAS  Google Scholar 

  96. Cheng S, Xing D, Logan BE (2011) Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens Bioelectron 26:1913–1917

    CAS  Google Scholar 

  97. Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100:717–723

    CAS  Google Scholar 

  98. Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528–536

    CAS  Google Scholar 

  99. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    CAS  Google Scholar 

  100. Cheng S, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour Technol 102:4468–4473

    CAS  Google Scholar 

  101. Wang X, Feng Y, Liu J, Shi X, Lee H, Li N, Ren N (2010) Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells. Biosens Bioelectron 26:946–948

    CAS  Google Scholar 

  102. Yu EH, Cheng S, Scott K, Logan BE (2007) Microbial fuel cell performance with non-Pt cathode catalysts. J Power Sources 171:275–281

    Google Scholar 

  103. Zuo Y, Cheng S, Logan BE (2008) Ion exchange membrane cathodes for scalable microbial fuel cells. Environ Sci Technol 42:6967–6972

    CAS  Google Scholar 

  104. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

    CAS  Google Scholar 

  105. Logan BE, Regan JM (2006) Microbial fuel cells: challenges and applications. Environ Sci Technol 40:5172–5180

    CAS  Google Scholar 

  106. Cournet A, Délia ML, Bergel A, Roques C, Bergé M (2010) Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochem Commun 12:505–508

    CAS  Google Scholar 

  107. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii SI, Logan BE, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103:358–363

    Google Scholar 

  108. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105:3968–3973

    CAS  Google Scholar 

  109. Newton GJ, Mori S, Nakamura R, Hashimoto K, Watanabe K (2009) Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Appl Environ Microbiol 75:7674–7681

    CAS  Google Scholar 

  110. Pham TH, Boon N, De Maeyer K, Höfte M, Rabaey K, Verstraete W (2008) Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol. doi:10.1007/s00253-008-1619-7. 80:985-993

  111. von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Google Scholar 

  112. Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Google Scholar 

  113. Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438

    CAS  Google Scholar 

  114. Wu X, Zhao F, Rahunen N, Varcoe JR, Avignone-Rossa C, Thumser AE, Slade RCT (2011) A role for microbial palladium nanoparticles in extracellular electron transfer. Angew Chem Int Ed 50:427–430

    CAS  Google Scholar 

  115. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    CAS  Google Scholar 

  116. Klimes A, Franks AE, Glaven RH, Tran H, Barrett CL, Qiu Y, Zengler K, Lovley DR (2011) Production of pilus-like filaments in Geobacter sulfurreducens in the absence of the type IV pilin protein PilA. FEMS Microbiol Lett 310:62–68

    Google Scholar 

  117. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348

    CAS  Google Scholar 

  118. Reguera G, Pollina RB, Nicoll JS, Lovley DR (2007) Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. J Bacteriol 189:2125–2127

    CAS  Google Scholar 

  119. Richter H, McCarthy K, Nevin KP, Johnson J, Rotello V, Lovley DR (2008) Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24:4376–4379

    CAS  Google Scholar 

  120. Tremblay PL, Summers ZM, Glaven RH, Nevin KP, Zengler K, Barrett CL, Qiu Y, Palsson BO, Lovley DR (2011) A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environ Microbiol 13:13–23

    CAS  Google Scholar 

  121. Chiang P, Burrows LL (2003) Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa. J Bacteriol 185:2374–2378

    CAS  Google Scholar 

  122. Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408

    CAS  Google Scholar 

  123. Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM (2009) Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ Sci 2:506–516

    CAS  Google Scholar 

  124. Krushkal J, Juárez K, Barbe JF, Qu Y, Andrade A, Puljic M, Adkins RM, Lovley DR, Ueki T (2010) Genome-wide survey for PilR recognition sites of the metal-reducing prokaryote Geobacter sulfurreducens. Gene 469:31–44

    CAS  Google Scholar 

  125. El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107:18127–18131

    CAS  Google Scholar 

  126. Hou H, Li L, Cho Y, de Figueiredo P, Han A (2009) Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS One 4:e6570

    Google Scholar 

  127. Hassett DJ, Korfhagen TR, Irvin TR, Schurz MJ, Sauer K, Lau GW, Sutton MD, Yu H, Hoiby N (2010) Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 14:117–130

    CAS  Google Scholar 

  128. Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K (2006) BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188:7335–7343

    CAS  Google Scholar 

  129. O’Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182:425–431

    Google Scholar 

  130. Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A (2001) The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci 98:6911–6916

    CAS  Google Scholar 

  131. Whitchurch CB, Beatson SA, Comolli JC, Jakobsen T, Sargent JL, Bertrand JJ, West J, Klausen M, Waite LL, Kang PJ, Tolker-Nielsen T, Mattick JS, Engel JN (2005) Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways. Mol Microbiol 55:1357–1378

    CAS  Google Scholar 

  132. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci 103:2839–2844

    Google Scholar 

  133. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Google Scholar 

  134. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    CAS  Google Scholar 

  135. Choy WK, Zhou L, Syn CK, Zhang LH, Swarup S (2004) MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species. J Bacteriol 186:7221–7228

    CAS  Google Scholar 

  136. Gooderham WJ, Gellatly SL, Sanschagrin F, McPhee JB, Bains M, Cosseau C, Levesque RC, Hancock REW (2009) The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Microbiology 155:699–711

    CAS  Google Scholar 

  137. Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ (2006) Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188:8213–8221

    CAS  Google Scholar 

  138. Ma L, Lu H, Sprinkle A, Parsek MR, Wozniak DJ (2007) Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 189:8353–8356

    CAS  Google Scholar 

  139. Caiazza NC, O’Toole GA (2004) SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol 186:4476–4485

    CAS  Google Scholar 

  140. Ueda A, Wood TK (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483

    Google Scholar 

  141. Debabov VG (2008) Electricity from microorganisms. Mikrobiologiia 77:149–157

    CAS  Google Scholar 

  142. Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690

    CAS  Google Scholar 

  143. Suh SJ, Silo-Suh L, Woods DE, Hassett DJ, West SE, Ohman DE (1999) Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 181:3890–3897

    CAS  Google Scholar 

  144. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    CAS  Google Scholar 

  145. Paradis-Bleau C, Sanschagrin F, Levesque RC (2005) Peptide inhibitors of the essential cell division protein FtsA. Protein Eng Des Sel 18:85–91

    CAS  Google Scholar 

  146. Hoang TT, Kutchma AJ, Becher A, Schweizer HP (2000) Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43:59–72

    CAS  Google Scholar 

  147. Qiu D, Damron FH, Mima T, Schweizer HP, Yu HD (2008) PBAD-based shuttle vectors for functional analysis of toxic and highly regulated genes in Pseudomonas and Burkholderia spp. and other bacteria. Appl Environ Microbiol 74:7422–7426

    CAS  Google Scholar 

  148. Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535

    CAS  Google Scholar 

  149. Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochem 43:1352–1358

    CAS  Google Scholar 

  150. Li Y, Lu A, Ding H, Jin S, Yan Y, Wang C, Zen C, Wang X (2009) Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 11:1496–1499

    CAS  Google Scholar 

  151. Ter Heijne A, Liu F, Van der Weijden R, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376–4381

    Google Scholar 

  152. Wang G, Huang L, Zhang Y (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30:1959–1966

    CAS  Google Scholar 

  153. You S, Zhao Q, Zhang J, Jiang J, Zhao S (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415

    CAS  Google Scholar 

  154. Zhang B, Zhou S, Zhao H, Shi C, Kong L, Sun J, Yang Y, Ni J (2010) Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng 33:187–194

    CAS  Google Scholar 

  155. Jang JK, Chang IS, Moon H, Kang KH, Kim BH (2006) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biotechnol Bioeng 95:772–774

    CAS  Google Scholar 

  156. Mu Y, Rabaey K, Rozendal R, Yuan Z, Keller J (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43:5137–5143

    CAS  Google Scholar 

  157. Mu Y, Rozendal R, Rabaey K, Keller J (2009) Nitrobenzene removal in bioelectrochemical systems. Environ Sci Technol 43:8690–8695

    CAS  Google Scholar 

  158. Li J, Liu G, Zhang R, Luo Y, Zhang C, Li M (2010) Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants. Bioresour Technol 101:4013–4020

    CAS  Google Scholar 

  159. Mu Y, Radjenovic J, Shen JY, Rozendal RE, Rabaey K, Keller J (2011) Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. Environ Sci Technol 45:782–788

    CAS  Google Scholar 

  160. Gu HY, Zhang XW, Li ZJ, Lei LC (2007) Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell. Chin Sci Bull 52:3448–3451

    CAS  Google Scholar 

  161. Catal T, Bermek H, Liu H (2009) Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett 31:1211–1216

    CAS  Google Scholar 

  162. Pandit S, Sengupta A, Kale S, Das D (2011) Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane. Bioresour Technol 102:2736–2744

    CAS  Google Scholar 

  163. Zhu X, Ni J (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem Commun 11:274–277

    CAS  Google Scholar 

  164. Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603

    CAS  Google Scholar 

  165. Watson VJ, Saito T, Hickner MA, Logan BE (2011) Polymer coatings as separator layers for microbial fuel cell cathodes. J Power Sources 196:3015–3025

    Google Scholar 

  166. Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    CAS  Google Scholar 

  167. Liu XW, Sun XF, Huang YX, Sheng GP, Zhou K, Zeng RJ, Dong F, Wang SG, Xu AW, Tong ZH, Yu HQ (2010) Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Res 44:5298–5305

    CAS  Google Scholar 

  168. Duteanu N, Erable B, Senthil Kumar SM, Ghangrekar MM, Scott K (2010) Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell. Bioresour Technol 101:5250–5255

    CAS  Google Scholar 

  169. Qian F, Wang G, Li Y (2010) Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett 10:4686–4691

    CAS  Google Scholar 

  170. Clauwaert P, Van Der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569

    CAS  Google Scholar 

  171. Nguyen TA, Lu Y, Yang X, Shi X (2007) Carbon and steel surfaces modified by Leptothrix discophora SP-6: characterization and implications. Environ Sci Technol 41:7987–7996

    CAS  Google Scholar 

  172. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    CAS  Google Scholar 

  173. Sun J, Bi Z, Hou B, Cao Y, Hu Y (2011) Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Res 45:283–291

    CAS  Google Scholar 

  174. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19:564–571

    CAS  Google Scholar 

  175. Huang L, Chen J, Quan X, Yang F (2010) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng 33:937–945

    CAS  Google Scholar 

  176. Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323

    CAS  Google Scholar 

  177. Rodrigo MA, Cañizares P, Lobato J (2010) Effect of the electron-acceptors on the performance of a MFC. Bioresour Technol 101:7014–7018

    CAS  Google Scholar 

  178. Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53:468–473

    CAS  Google Scholar 

  179. Schamphelaire LD, Boeckx P, Verstraete W (2010) Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Appl Microbiol Biotechnol 87:1675–1687

    Google Scholar 

  180. Malik S, Drott E, Grisdela P, Lee J, Lee C, Lowy DA, Gray S, Tender LM (2009) A self-assembling self-repairing microbial photoelectrochemical solar cell. Energy Environ Sci 2:292–298

    CAS  Google Scholar 

  181. He Z, Shao H, Angenent LT (2007) Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens Bioelectron 22:3252–3255

    CAS  Google Scholar 

  182. Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 32:870–876

    CAS  Google Scholar 

  183. De Schamphelaire L, Van den Bossche L, Dang HS, Hofte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizo deposits of rice plants. Environ Sci Technol 42:3053–3058

    Google Scholar 

  184. Kaku N, Yonezawa N, Kodama Y, Watanabe K (2008) Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol 79:43–49

    CAS  Google Scholar 

  185. Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554–2559

    CAS  Google Scholar 

  186. Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103:85–91

    CAS  Google Scholar 

  187. Butler CS, Clauwaert P, Green SJ, Verstraete W, Nerenberg R (2010) Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol 44:4685–4691

    CAS  Google Scholar 

  188. Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152

    CAS  Google Scholar 

  189. Clauwaert P, Rabaey K, Aelterman P, Schamphelaire LD, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    CAS  Google Scholar 

  190. Park H, Kim DK, Choi YJ, Park D (2005) Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. Process Biochem 40:3383–3388

    CAS  Google Scholar 

  191. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    CAS  Google Scholar 

  192. Shea C, Clauwaert P, Verstraete W, Nerenberg R (2008) Adapting a denitrifying biocathode for perchlorate. Water Sci Technol 58:1941–1946

    CAS  Google Scholar 

  193. Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR (2010) Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Rep 2:289–294

    CAS  Google Scholar 

  194. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604

    CAS  Google Scholar 

  195. Chen GW, Choi SJ, Lee TH, Lee GY, Cha JH, Kim CW (2008) Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol 79:379–388

    CAS  Google Scholar 

  196. Clauwaert P, Desloover J, Shea C, Nerenberg R, Boon N, Verstraete W (2009) Enhanced nitrogen removal in bio-electrochemical systems by pH control. Biotechnol Lett 31:1537–1543

    CAS  Google Scholar 

  197. Wrighton KC, Virdis B, Clauwaert P, Read ST, Daly RA, Boon N, Piceno Y, Andersen GL, Coates JD, Rabaey K (2010) Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME J 4:1443–1455

    CAS  Google Scholar 

  198. Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M (2010) Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethane. Biosens Bioelectron 25:1796–1802

    CAS  Google Scholar 

  199. Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900

    CAS  Google Scholar 

  200. Huang L, Chai X, Cheng S, Chen G (2011) Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem Eng J 166:652–661

    CAS  Google Scholar 

  201. Pons L, Délia ML, Bergel A (2011) Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes. Bioresour Technol 102:2678–2683

    CAS  Google Scholar 

  202. Cheng S, Xing D, Call D, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958

    CAS  Google Scholar 

  203. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090

    CAS  Google Scholar 

  204. Wang X, Feng Y, Liu J, Lee H, Li C, Li N, Ren N (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25:2639–2643

    CAS  Google Scholar 

  205. Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999) Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13:475–478

    CAS  Google Scholar 

  206. Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electronchim Acta 55:813–818

    CAS  Google Scholar 

  207. Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP, Lovley DR (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80:142–150

    CAS  Google Scholar 

  208. Sleutels THJA, Hameler HVM, Rozendal RA, Buisman CJN (2009) Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int J Hydrog Energy 34:3612–3620

    CAS  Google Scholar 

  209. Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem 39:1007–1012

    CAS  Google Scholar 

  210. Foley JM, Rozendal RA, Hertle CR, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44:3629–3637

    CAS  Google Scholar 

  211. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640

    CAS  Google Scholar 

  212. Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994

    CAS  Google Scholar 

  213. Cheng H, Scott K, Ramshaw C (2002) Intensification of water electrolysis in a centrifugal field. J Electrochem Soc 149:D172–D177

    CAS  Google Scholar 

  214. Ambler JR, Logan BE (2011) Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production. Int J Hydrog Energy 36:160–166

    CAS  Google Scholar 

  215. Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ Sci Technol 42:3401–3406

    CAS  Google Scholar 

  216. Tartakovskya B, Manuel MF, Neburchilov V, Wang H, Guiot SR (2008) Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. J Power Sources 182:291–297

    Google Scholar 

  217. Sun M, Sheng G, Zhang L, Xia C, Mu Z, Liu X, Wang H, Yu H, Qi R, Yu T, Yang M (2008) An MEC-MFC-coupled system for biohydrogen production from acetate. Environ Sci Technol 42:8095–8100

    CAS  Google Scholar 

  218. Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010) Bio-electrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513–517

    CAS  Google Scholar 

  219. Rabaey K, Bützer S, Brown S, Keller J, Rozendal R (2010) High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ Sci Technol 44:4315–4321

    CAS  Google Scholar 

  220. Li H, Ni J (2011) Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell. Bioresour Technol 102:2731–2735

    CAS  Google Scholar 

  221. Nimje VR, Chen CY, Chen CC, Chen HR, Tseng MJ, Jean JS, Chang YF (2011) Glycerol degradation in single-chamber microbial fuel cells. Bioresour Technol 102:2629–2634

    CAS  Google Scholar 

  222. Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755

    CAS  Google Scholar 

  223. Liu L, Yuan Y, Li F, Feng C (2011) In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresour Technol 102:2468–2473

    CAS  Google Scholar 

  224. Fu L, You S, Zhang G, Yang F, Fang X (2010) Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell. Chem Eng J 160:164–169

    CAS  Google Scholar 

  225. Luo H, Jenkins PE, Ren Z (2011) Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol. doi:10.1021/es1022202. 45:340-344

  226. Mehanna M, Kiely PD, Call DF, Logan BE (2010) Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ Sci Technol 44:9578–9583

    CAS  Google Scholar 

  227. Huang L, Cheng S, Chen G (2011) Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol 86:481–491

    CAS  Google Scholar 

  228. Zhang Y, Min B, Huang L, Angelidaki I (2009) Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl Environ Microbiol 75:3389–3395

    CAS  Google Scholar 

  229. Cheng SA, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496

    Google Scholar 

  230. Wagner RC, Call DI, Logan BE (2010) Optimal set anode potentials vary in bioelectro chemical systems. Environ Sci Technol 44:6036–6041

    CAS  Google Scholar 

  231. Cheng SA, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496

    Google Scholar 

  232. You SJ, Ren NQ, Zhao QL, Wang JY, Yang FL (2009) Power generation and electrochemical analysis of biocathodemicrobial fuel cell using graphite fiber brush as cathode material. Fuel Cells 9:588–596

    CAS  Google Scholar 

  233. Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165

    Google Scholar 

  234. Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947

    Google Scholar 

  235. Thrash JC, Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746

    Google Scholar 

  236. Thrash JC, Coates JD (2008) Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 42:3921–3931

    CAS  Google Scholar 

  237. Powell EE, Mapiour ML, Evitts RW, Hill GA (2009) Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour Technol 100:269–274

    Google Scholar 

  238. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603

    Google Scholar 

  239. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97

    Google Scholar 

  240. Dumas C, Basseguy R, Bergel A (2008) Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim Acta 53:2494–2500

    Google Scholar 

  241. Voordeckers JW, Kim BC, Izallalen M, Lovley DR (2010) Role of Geobacter sulfurreducens outer-surface c-type cytochromes in the reduction of soil humic acid and anthraquinone-2, 6-disulfonate. Appl Environ Microbiol 76:2371–2375

    Google Scholar 

  242. Eggleston CM, Vörös J, Shi L, Lower BH, Droubay TC, Colberg PJS (2008) Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium with oxide electrodes: a candidate biofuel cell system. Inorg Chim Acta 361: 769–777

    Google Scholar 

  243. Freguia S, Rabaey K, Yuan Z, Keller J (2008) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42:1387–1396

    Google Scholar 

Download references

Acknowledgments

Huang and Cheng gratefully acknowledge financial support from the Natural Science Foundation of China (Nos. 51178077, 21077017 and 21073163), Science & Research Program of Zhejiang Province (2010 C31014), Open Project of State Key Laboratory of Clean Energy Utilization (ZJUCEU2010001), Program for Changjiang Scholars and Innovative Research Team in University (IRT0813), and “Energy + X” (2008) key program through Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huang, L., Cheng, S., Hassett, D.J., Gu, T. (2012). Wastewater Treatment with Concomitant Bioenergy Production Using Microbial Fuel Cells. In: Sharma, S., Sanghi, R. (eds) Advances in Water Treatment and Pollution Prevention. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4204-8_14

Download citation

Publish with us

Policies and ethics