Skip to main content

Nutrient-Hormone Interactions in Citrus: Physiological Implications

  • Chapter
  • First Online:
Advances in Citrus Nutrition

Abstract

Citrus growth and development is regulated by complex but subtly tuned nutritional and hormonal interaction in response to environmental signalling. Flower induction is stimulated by low temperatures and water stress and mediated by previous fruit load, being endogenous gibberellins (GAs) content pointed as the main inhibiting hormones. The promoting role of carbohydrates or nitrogen (N) on flowering has not been demonstrated, but a minimum content of these compounds seems to be required for flower formation. Fruit set is a critical step for fruit production, being initially regulated by GAs content. Thereafter, during the onset of the source-sink competition, fruit set depends upon carbohydrates and N availability and fruitlets sink strength. During stage II of fruit development, fruit growth is promoted by auxins, carbohydrates and water accumulation. Afterwards, peel colour development, which is stimulated by low temperatures, is promoted by the decline of flavedo’s GAs content and the steady-state level of ethylene, as carbohydrates and abscisic acid (ABA) increase and N decrease during this final stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott Ch (1935) Blossom-bud differentiation in citrus trees. Am J Bot 22:476–485

    Google Scholar 

  • Agustí M (1980) Biología y control de la floración en el género Citrus. Tesis Doctoral, Universidad Politécnica de Valencia

    Google Scholar 

  • Agustí M, Almela V (1991) Aplicación de fitorreguladores en citricultura. Ed. Aedos, Barcelona-España

    Google Scholar 

  • Agustí M, García-Marí F, Guardiola JL (1982) The influence of flowering intensity on the shedding of reproductive structures in sweet orange. Sci Hortic 17:343–352

    Google Scholar 

  • Agustí M, Almela V, Guardiola JL (1988) Aplicaciones de ácido giberélico para el control de alteraciones de la corteza de las mandarinas asociadas a la maduración. Invest Agr Prot Veg 3(2):125–137

    Google Scholar 

  • Agustí M, Almela V, Aznar M et al (1994) The use of 2,4-DP to improve fruit size in citrus. Proc Int Soc Citricult VII Int Citrus Cong Acireale Italia 1:423–427

    Google Scholar 

  • Agustí M, Juan M, Martínez-Fuentes A et al (2006) Application of 2,4-dichlorophenoxypropionic acid and acid 2-ethylhexyl ester reduces mature fruit abscission in Citrus navel cultivars. J Hortic Sci Biotechnol 81(3):532–536

    Google Scholar 

  • Agustí J, Zapater M, Iglesias DJ et al (2007) Differential expression of putative 9-cis-epoxycarotene dioxygenases and abscisic acid accumulation in water stressed vegetative and reproductive tissues of citrus. Plant Sci 172:85–94

    Google Scholar 

  • Aharoni Y (1968) Respiration of oranges and grapefruit harvested at different stages of development. Plant Physiol 43:99–102

    PubMed  CAS  Google Scholar 

  • Ali-Dinar HM, Krezdorn AH, Wheaton TA (1988) The sexual-hormonal relation in citrus during fruit set. Acta Hortic 218:159–174

    Google Scholar 

  • Alós E, Cercós M, Rodrigo MJ et al (2006) Regulation of color break in Citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. J Agr Food Chem 54(13):4888–4895

    Google Scholar 

  • Anthony FE, Coggins CW Jr (2001) NAA and 3,5,6-TPA control mature fruit drop in California citrus. Hortic Sci 36:1296–1299

    CAS  Google Scholar 

  • Arias M, Carbonell J, Agustí M (2005) Endogenous free polyamines and their role in fruit set of low and high parthenocarpic ability citrus cultivars. J Plant Physiol 162:845–853

    PubMed  CAS  Google Scholar 

  • Ashraf MY, Gul A, Ashraf M et al (2010) Improvement in yield and quality of Kinnow (Citrus deliciosa x Citrus nobilis) by potassium fertilization. J Plant Nutri 33:1625–1637

    CAS  Google Scholar 

  • Ayalon S, Monselise SP (1960) Flower bud induction and differentiation in the Shamouti orange. Am Soc Hortic Sci 75:216–221

    Google Scholar 

  • Aznar M, Almela V, Juan M et al (1995) Effect of the synthetic auxin phenothiol on fruit development of ‘Fortune’ mandarin. J Hortic Sci 70:617–621

    CAS  Google Scholar 

  • Bañuls J, Quiñones A, Primo-Millo E et al (2004) Complementary effect of foliar spray of KNO3 on mineral status, yield and fruit quality in citrus orchard. Proc Int Soc Citricult II:686–687

    Google Scholar 

  • Barry GH, van Wyk AA (2004) Novel approaches to rind colour enhancement of citrus. Proc Int Soc Citricult III:1076–1079

    Google Scholar 

  • Becerra S, Guardiola JL (1984) Interrelationship between flowering and fruiting in sweet orange, cv. ‘Navelina’. Proc Int Soc Citricult 1:190–194

    Google Scholar 

  • Ben-Cheikh W, Perez-Botella J, Tadeo FR et al (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of Citrus. Plant Physiol 114:557–564

    PubMed  CAS  Google Scholar 

  • Benhamou L, El-Otmani M, Goumari M et al (2004) The potential use of GA3 and urea to manipulate flowering and reduce alternate-bearing pattern of the ‘Nour’ Clementine mandarin. Proc Int Soc Citricult I:479–483

    Google Scholar 

  • Bevington KB, Castle WS (1985) Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. J Am Soc Hortic Sci 110:840–845

    Google Scholar 

  • Borroto CG, López M, Hidalgo O (1981) Efecto del estrés hídrico y la presencia de frutos de la cosecha anterior sobre el rendimiento de los naranjos Valencia. Centro Agrícola 2:43–55

    Google Scholar 

  • Bryla DR, Bouma TJ, Hartmond U et al (2001) Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field. Plant Cell Environ 24:781–790

    Google Scholar 

  • Bustan A, Goldschmidt EE (1998) Estimating the cost of flowering in a grapefruit tree. Plant Cell Environ 21:217–224

    Google Scholar 

  • Bustan A, Erner Y, Goldschmidt EE (1995) Interactions between developing citrus fruits and their supportive vascular system. Ann Bot 76:657–666

    Google Scholar 

  • Chapman HD, Parker ER (1942) Weekly absorption of nitrate by young bearing orange trees growing out of doors in solution cultures. Plant Physiol 17(8):366–376

    PubMed  CAS  Google Scholar 

  • Chapman HD, Reyner DS (1951) Effects of various levels of phosphate on the growth, yield, composition and quality of Washington navel oranges. Hilgardia 20:325–358

    CAS  Google Scholar 

  • Coggins CW, Hall AE, Jones WW (1981) The influence of temperature on regreening and carotenoid content of the ‘Valencia’ orange rind. J Am Soc Hortic Sci 106:251–254

    CAS  Google Scholar 

  • Cohen A (1984) Citrus fruit enlargement by means of summer girdling. J Hortic Sci 59(1):119–125

    Google Scholar 

  • Cooper WC, Rasmussen GK, Rogers BJ et al (1968) Control of abscission in agricultural crops and its physiological basis. Plant Physiol 43:1560–1576

    PubMed  CAS  Google Scholar 

  • da Cunha Barros M, Gravina A (2006) Influencia del tipo de brote en el cuajado y crecimiento del fruto del tangor Ortanique. Agrociencia X 1:37–46

    Google Scholar 

  • Davenport TL (1990) Citrus flowering. Hortic Rev 12:349–408

    Google Scholar 

  • Eaks IL (1970) Respiratory response, ethylene production, and response to ethylene on citrus fruit during ontogeny. Plant Physiol 45:334–338

    PubMed  CAS  Google Scholar 

  • Eilati SK, Goldschmidt EE, Monselise SP (1969a) Hormonal control of colour change in orange peel. Experientia 25:209–210

    PubMed  CAS  Google Scholar 

  • Eilati SK, Monselise SP, Budowski P (1969b) Seasonal development of external color and carotenoid content in the peel of ripening ‘Shamouti’ oranges. J Am Soc Hortic Sci 94(4):346–348

    CAS  Google Scholar 

  • El-Otmani M, Agustí M, Aznar M et al (1993) Improving the size of fortune mandarin fruits by 2,4-DP. Sci Hortic 55:283–290

    CAS  Google Scholar 

  • El-Otmani M, Coggins CH, Agustí M et al (2000) Plant growth regulators in citriculture: world current uses. Crit Rev Plant Sci 19(5):395–447

    CAS  Google Scholar 

  • El-Otmani M, ZharaTaibi F, Lmoufid B et al (2004) Improved use of foliar urea on Clementine mandarin to manipulate cropping in a sustainable production system. Acta Hortic 632:167–175

    CAS  Google Scholar 

  • Embleton TW, Jones WW, Page AL (1967) Potassium and phosphorous effects on deficient Eureka lemon trees and some salinity problems. Proc Am Soc Hortic Sci 91:120–127

    CAS  Google Scholar 

  • Embleton TW, Jones WW, Labanaukas CK (1971) Leaf analysis and phosphorous fertilization of oranges. Calif Citrogr 56:101–104

    Google Scholar 

  • Erner Y, Shomer I (1996) Morphology and anatomy of stems and pedicels of spring flush shoots associated with citrus fruit set. Ann Bot 77:537–545

    Google Scholar 

  • Erner Y, Artzi B, Tagari E et al (2000) Carbohydrate and vascular bundle effects on citrus fruit set. Proc Int Soc Citricult 1:693–698

    Google Scholar 

  • Evans ML (1985) The action of auxin on plant cell elongation. Crit Rev Plant Sci 2:213–265

    Google Scholar 

  • Evans TE, Malmberg RL (1989) Do polyamines have roles in plant developments?. Ann Rev Plant Physiol/ Plant Mol Biol 40:235–269

    CAS  Google Scholar 

  • Fidelibus MW, Koch KE, Davies FS (2008) Gibberellic acid alters sucrose, hexoses, and their gradients in peel tissues during color break delay in ‘Hamlin’ orange. J Am Soc Hortic Sci 133(6):706–767

    Google Scholar 

  • Foyer CH, Galtier N (1996) Source–sink interaction and communication in leaves. In: Zaminski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source–sink relations. Marcel Dekker, New York

    Google Scholar 

  • Frenkel C, Dick R (1973) Auxin inhibition of ripening in Bartlett pears. Plant Physiol 51:6–9

    PubMed  CAS  Google Scholar 

  • Fujii H, Shimada T, Sugiyama A et al (2007) Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant Sci 173:340–348

    CAS  Google Scholar 

  • Fujii H, Shimada T, Sugiyama A et al (2008) Profiling gibberellin (GA3)-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Sci Hortic 116(3):291–298

    CAS  Google Scholar 

  • Gambetta G (2009) Control endógeno y exógeno de la maduración externa de los frutos cítricos. Tesis Doctoral, Universidad Politécnica de Valencia España

    Google Scholar 

  • Gambetta G, Espino M, Pardo E et al (2008) ‘Montenegrina’ Mandarin: characterization of the agronomic behaviour and fruit size improvement. Proc Int Soc Citricult I:561–566

    Google Scholar 

  • Gambetta G, Martínez-Fuentes A, Bentancur O et al (2011) Hormonal and nutritional changes in the flavedo regulating rind colour development in sweet orange [Citrus sinensis (L.) Osb.)]. J Plant Growth Regul. doi:10.1007/s00344-011-9237-5

  • García-Luis A, Agustí M, Almela V et al (1985) Effect of gibberellic acid on ripening and peel puffing in Satsuma mandarin. Sci Hortic 27:75–86

    Google Scholar 

  • García-Luis A, Fornes F, Guardiola JL (1986a) Effects of gibberellin A3 and citoquinins on natural and post-harvest, ethylene-induced pigmentation of Satsuma mandarin peel. Physiol Plant 68:271–274

    Google Scholar 

  • García-Luis A, Almela V, Monerri C et al (1986b) Inhibition of flowering ‘in vivo’ by existing fruits and applied growth regulators in Citrus unshiu. Physiol Plant 66:515–520

    Google Scholar 

  • García-Luis A, Kanduser M, Santamarina P et al (1992) Low temperature influence on flowering in Citrus. The separation of inductive and bud dormancy releasing effects. Physiol Plant 86:648–652

    Google Scholar 

  • García-Luis A, Fornes F, Guardiola JL (1995) Leaf carbohydrates and flower formation in citrus. J Am Soc Hortic Sci 120(2):222–227

    Google Scholar 

  • Goldschmidt EE (1976) Endogenous growth substances of Citrus tissues. Hortic Sci 11:95–99

    CAS  Google Scholar 

  • Goldschmidt EE (1999) Carbohydrate supply as a critical factor for citrus fruit development and productivity. Hortic Sci 34(6):1020–1024

    Google Scholar 

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448

    PubMed  CAS  Google Scholar 

  • Goldschmidt EE, Koch KE (1996) Citrus. In: Zaminski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source–sink relations. Marcel Dekker, New York

    Google Scholar 

  • Goldschmidt E, Monselise SP (1972) Hormonal control of flowering in Citrus and some other woody perennials. In: Carr DJ (ed) Plant growth substances. Springer, New York

    Google Scholar 

  • Goldschmidt EE, Aschkenazi N, Herzano Y et al (1985) A role for carbohydrate levels in the control of flowering in Citrus. Sci Hortic 26:159–166

    CAS  Google Scholar 

  • Goldschmidt EE, Huberman M, Goren R (1993) Probing the role of endogenous ethylene in the degreening of citrus fruit with ethylene antagonist. Plant Growth Regul 12:325–329

    CAS  Google Scholar 

  • Gómez-Cadenas A, Mehouachi J, Tadeo FR et al (2000) Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210:636–643

    PubMed  Google Scholar 

  • Goren R (1993) Anatomical, physiological and hormonal aspects on abscission in citrus. Hortic Rev 15:145–182

    Google Scholar 

  • Gravina A (2007) Aplicación del ácido giberélico en Citrus: revisión de resultados experimentales en Uruguay. Agrociencia XI 1:57–66

    Google Scholar 

  • Gravina A, Arbiza H, Juan M et al (1996) Flowering-fruiting interrelationships in the ‘Ellendale’ tangor under the growing conditions of Spain and Uruguay. Proc Int Soc Citricult II:1081–1085

    Google Scholar 

  • Gravina A, Arbiza H, Telias A et al (2004) Harvest date effect on fruit quality and return bloom in three citrus cultivars. Proc Int Soc Citricult 1:284–290

    Google Scholar 

  • Greenberg J, Goldschmidt EE, Goren R (1993) Potential and limitations of the use of paclobutrazol in Citrus orchards in Israel. Acta Hortic 329:58–61

    Google Scholar 

  • Gross J (1977) Carotenoid pigments in citrus. In: Nagy S (ed) Citrus science and technology, vol I. AVI, Westport, pp 302–354

    Google Scholar 

  • Gross J (1981) Pigment changes in the flavedo of Dancy tangerine (Citrus reticulata) during ripening. Z Pflanzenphysiol 103:451–457

    CAS  Google Scholar 

  • Guardiola JL, Monerri C, Agustí M (1982) The inhibitory effect of gibberellic acid of flowering in Citrus. Physiol Plant 55:136–142

    CAS  Google Scholar 

  • Guardiola JL, García-Marí F, Agustí M (1984) Competition and fruit set in the Washington navel orange. Physiol Plant 2:297–302

    Google Scholar 

  • Guardiola JL, Barres MT, Albert C et al (1993) Effects of exogenous growth regulators on fruit development in Citrus unshiu. Ann Bot 71:169–176

    CAS  Google Scholar 

  • Harty AR, Van Staden J (1988) Paclobutrazol and temperature effects on lemon. In: Proceedings of the sixth international citrus congress, Aviv, pp 343–353

    Google Scholar 

  • Holland N, Sala JM, Menezes HC et al (1999) Carbohydrate content and metabolism as related to maturity and chilling sensitivity of Cv. Fortune mandarins. J Agr Food Chem 47:2513–2518

    CAS  Google Scholar 

  • Huerta L, Forment J, Gadea J et al (2008) Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant Cell Environ 31:1620–1633

    PubMed  CAS  Google Scholar 

  • Huff A (1983) Nutritional control of regreening and degreening in Citrus peel segments. Plant Physiol 73:243–249

    PubMed  CAS  Google Scholar 

  • Huff A (1984) Sugar regulation of plastid interconversions in the epicarp of Citrus fruit. Plant Physiol 76:307–312

    PubMed  CAS  Google Scholar 

  • Iglesias DJ, Tadeo FR, Legaz F et al (2001) In vivo sucrose stimulation of colour change in citrus fruit epicarps: interactions between nutritional and hormonal signals. Physiol Plant 112:244–250

    PubMed  CAS  Google Scholar 

  • Iglesias DJ, Lliso I, Tadeo FR et al (2002) Regulation of photosynthesis through source:sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiol Plant 116:563–572

    CAS  Google Scholar 

  • Iwahori S, Oohata J (1981) Control of flowering of ‘Satsuma’ mandarins (Citrus unshiu Marc) with gibberellin. Proc Int Soc Citricult I:247–249

    Google Scholar 

  • Iwahori S, García-Luis A, Santamarina P et al (1990) The influence of ringing on bud development and flowering in Satsuma mandarin. J Exp Bot 41:1341–1346

    Google Scholar 

  • Jacob-Wilk D, Holland D, Goldschmidt EE et al (1999) Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20(6):653–661

    PubMed  CAS  Google Scholar 

  • Jones WW, Embleton TW (1959) The visual effect of nitrogen nutrition on fruit quality of ‘Valencia’ oranges. Proc Am Soc Hortic Sci 73:234–236

    Google Scholar 

  • Jones WW, Embleton TW, Coggins CW (1975) Starch content of rootstock of ‘Kinnow’ mandarin trees bearing fruit in alternate years. Hortic Sci 10(5):514

    CAS  Google Scholar 

  • Khairi MM, Hall AE (1976) Effect of air and soil temperatures on vegetative growth of Citrus. J Am Soc Hortic Sci 101(4):337–341

    Google Scholar 

  • Koo RCJ, Reese RL (1976) Influence of fertility and irrigation treatments on fruit quality of Temple orange. Proc Fla State Hortic Sci Soc 89:49–51

    CAS  Google Scholar 

  • Koo RCJ, Reese RL (1977) Influence of nitrogen, potassium, and irrigation on citrus fruit quality. Proc Int Soc Citricult I:34–38

    Google Scholar 

  • Koshita Y, Takahara T, Ogata T et al (1999) Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin. Sci Hortic 79:185–194

    CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Photosynthesis. In: Physiology of woody plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Krajewsky A, Rabe E (1995) Citrus flowering: a critical evaluation. J Hortic Sci 70(3):357–374

    Google Scholar 

  • Kriedemann PE (1969) 14C-translocation in orange plants. Aust J Agr Res 20:291–300

    CAS  Google Scholar 

  • Krueger RR, Arpaia ML (2008) Seasonal uptake of nutrients by mature field-grown ‘Valencia’ (Citrus sinensis O.) trees in California. Proc Int Soc Citricult 1:588–594

    Google Scholar 

  • Kuraoka T, Iwasaki K, Ishii T (1977) Effects of GA3 on puffing and levels of GA3-like substances and ABA in the peel of Satsuma mandarin (Citrus unshiu Marc.). J Am Soc Hortic Sci 102(5):651–654

    CAS  Google Scholar 

  • Lafuente MT, Martínez TM, Zacarías L (1997) Abscisic acid in the response of Fortune mandarins to chilling. Effect of maturity and high-temperature conditioning. J Sci Food Agr 73:494–502

    CAS  Google Scholar 

  • Lavon R, Goldschmidt EE, Salomon R et al (1995) Effect of potassium, magnesium and calcium deficiencies on carbohydrate pools and metabolism in Citrus leaves. J Am Soc Hortic Sci 120(1):54–58

    CAS  Google Scholar 

  • Layne DR, Flore JA (1995) End-product inhibition of photosynthesis in Prunus cerasus L. in response to whole-plant source–sink manipulation. J Am Soc Hortic Sci 120:583–599

    Google Scholar 

  • Leegood RC (1996) Primary photosynthate production: physiology and metabolism. In: Zaminski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source–sink relations. Marcel Dekker, New York

    Google Scholar 

  • Lewis LN, Coggins CW (1964) The inhibition of carotenoid accumulation in navel oranges by gibberellin A3, as measured by thin layer chromatography. Plant Cell Physiol 5:457–463

    CAS  Google Scholar 

  • Lewis LN, Coggins CW, Garberg MJ (1964) Chlorophyll concentration in the navel orange rind as related to potassium gibberellate, light intensity and time. J Am Soc Hortic Sci 84:177–180

    CAS  Google Scholar 

  • Lewis LN, Coggins CW Jr, Labanauskas CK et al (1967) Biochemical changes associated with natural and gibberellin A3 delayed senescence in the Navel orange rind. Plant Cell Physiol 8:151–160

    CAS  Google Scholar 

  • Lord EM, Eckard KJ (1987) Shoot development in Citrus sinensis L. (Washington navel orange). II. Alterations of developmental fate of flowering shoots after GA treatment. Bot Gaz 148:17–22

    CAS  Google Scholar 

  • Lovatt C, Zheng Y, Hake K (1988) A new look at the Kraus-Kraybill hypothesis and flowering in citrus. Proc Int Soc Citricult I:475–483

    Google Scholar 

  • Manzi M (2011) Respuesta metabólica y reproductiva de dos variedades de cítricos bajo estrés hídrico. Tesis de Maestría, Facultad de Agronomía Uruguay

    Google Scholar 

  • Martínez-Fuentes A, Mesejo C, Juan M et al (2002) Restrictions on the exogenous control of flowering in citrus. Acta Hortic 632:91–98

    Google Scholar 

  • Martínez-Fuentes A, Mesejo C, Reig C et al (2010) Timing of the inhibitory effect of fruit on return bloom of ‘Valencia’ sweet orange (Citrus sinensis (L.) Osbeck). J Sci Food Agr 90(11):1936–1943

    Google Scholar 

  • Mehouachi J, Tadeo FR, Zaragoza S et al (1996) Effects of gibberellic acid and paclobutrazol on growth and carbohydrate accumulation in shoots and roots of citrus rootstock seedlings. J Hortic Sci 71(5):747–754

    CAS  Google Scholar 

  • Mehouachi J, Iglesias D, Agustí M et al (2009) Delay of early fruitlet abscission by branch girdling in citrus coincides with previous increases in carbohydrate and gibberellin concentrations. Plant Growth Reg 58:15–23

    Google Scholar 

  • Mesejo C, Martínez-Fuentes A, Juan M et al (2003) Vascular tissues development of citrus fruit peduncle is promoted by synthetic auxins. Plant Growth Regul 39:131–135

    CAS  Google Scholar 

  • Mesejo C, Gambetta G, Gravina A et al (2011) Relationship between soil temperature and fruit colour development of ‘Clemenpons’ Clementine mandarin (Citrus clementina Hort ex. Tan). J Sci Food Agr 91. doi:10.1002/jsfa.4600

  • Monerri C, Fortunato-Almeida A, Molina RV et al (2011) Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing ‘Salustiana’ sweet orange (Citrus sinensis L.). Sci Hortic 129:71–78

    CAS  Google Scholar 

  • Monselise SP (1977) Citrus fruit development, endogenous systems, and external regulation. Proc Int Soc Citricult 2:664–668

    CAS  Google Scholar 

  • Moss GI (1976) Temperature effects on flower initiation in sweet orange (Citrus sinensis). Aust J Agr Res 27:399–407

    Google Scholar 

  • Moss GI (1977) Major factors influencing flower formation and subsequent fruit-set of sweet orange. Proc Int Soc Citricult II:215–222

    Google Scholar 

  • Murti GSR (1989) Studies on gibberellin-like substances in acid lime (Citrus aurantifolia Swingle). Indian J Plant Physiol 32:57–64

    CAS  Google Scholar 

  • Nishikawa F, Endo T, Shimada T et al (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J Exp Bot 58(14):3915–3927

    Google Scholar 

  • Okuda H (2000) A comparison of IAA and ABA levels in leaves and roots of two citrus cultivars with different degrees of alternate bearing. J Hortic Sci Biotechnol 75(3):355–359

    CAS  Google Scholar 

  • Okuda H, Kihara T, Iwagaki I (1996) Effects of paclobutrazol application to soil at the beginning of maturation on sprouting, shoot growth, flowering and carbohydrate contents in roots and leaves of satsuma mandarin. J Hortic Sci 71(5):785–789

    CAS  Google Scholar 

  • Paul MJ, Pellny TK (2003) Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot 54:539–547

    PubMed  CAS  Google Scholar 

  • Plummer JA, Mullins MG, Vine JH et al (1989) The role of endogenous hormones in shoot emergence and abscission in alternate bearing ‘Valencia’ orange trees. Acta Hortic 239:341–344

    Google Scholar 

  • Poerwanto R, Inoue H (1990) Effect of air and soil temperatures on flower development and morphology of Satsuma mandarin. J Hortic Sci 65(6):739–745

    Google Scholar 

  • Poerwanto R, Inoue H, Kataoka I (1989) Effect of temperature on the morphology and physiology of the roots of trifoliate orange budded with satsuma mandarin. J Jpn Soc Hortic Sci 58(2):267–274

    Google Scholar 

  • Pons J, Almela V, Juan M et al (1992) Use of ethephon to promote colour development in early ripening clementine cultivars. Proc Int Soc Citricult I:459–462

    Google Scholar 

  • Porat R, Weiss B, Cohen L et al (1999) Effects of ethylene and 1-methylcyclopropene on the postharvest qualities of ‘Shamouti’ oranges. Postharvest Biol Technol 15:155–163

    CAS  Google Scholar 

  • Purvis AC, Barmore Ch (1981) Involvement of ethylene in chlorophyll degradation in peel of Citrus fruits. Plant Physiol 68:854–856

    PubMed  CAS  Google Scholar 

  • Purvis AC, Grierson W (1982) Accumulation of reducing sugar and resistance of grapefruit peel to chilling injury as related to winter temperatures. J Am Soc Hortic Sci 107:139–142

    Google Scholar 

  • Quiñones A, González MC, Montaña C et al (2004) Fate and uptake efficiency of 15N applied with different seasonal distributions in Citrus trees. Proc Int Soc Citricult II:587–592

    Google Scholar 

  • Rabe E (1994) Yields benefits associated with pre-blossom low-biuret urea sprays on Citrus spp. J Hortic Sci 69(3):495–500

    Google Scholar 

  • Rabe E, van Rensburg P (1996) Gibberellic acid sprays, girdling, flower thinning and potassium applications affect fruit splitting and yield in ‘Ellendale’ tangor. J Hortic Sci 71(2):195–203

    CAS  Google Scholar 

  • Rasmussen GK (1974) Cellulase activity in separation zones of citrus fruit treated with abscisic acid under normal and hypobaric atmospheres. J Am Soc Hortic Sci 99:229–231

    CAS  Google Scholar 

  • Reuther W, Smith PF (1952) Relation of nitrogen, potassium and magnesium fertilization to some fruit quality of Valencia orange. Proc Am Soc Hortic Sci 59:1–12

    CAS  Google Scholar 

  • Richardson GR, Cowan AK (1995) Abscisic acid content of Citrus flavedo in relation to colour development. J Hortic Sci 70:769–773

    CAS  Google Scholar 

  • Rivas F, Arbiza H, Borges A et al (2006a) Caracterización Del ­comportamiento reproductivo de la mandarina Nova en el sur de Uruguay. TodoCitrus 32:22–31

    Google Scholar 

  • Rivas F, Erner Y, Alós E et al (2006b) Girdling increases carbohydrate availability and fruit-set in citrus cultivars irrespective of parthenocarpic ability. J Hortic Sci Biotechnol 81:289–295

    CAS  Google Scholar 

  • Rivas F, Gravina A, Agustí M (2007) Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivar. Tree Physiol 27:527–535

    PubMed  CAS  Google Scholar 

  • Rivas F, Martínez-Fuentes A, Mesejo C et al (2010) Efecto hormonal y nutricional del anillado en frutos de diferentes tipos de brotes de cítricos. Agrociencia XIV(I):8–14

    Google Scholar 

  • Rodrigo MJ, Zacarías L (2007) Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biol Technol 43(1):14–22

    CAS  Google Scholar 

  • Rodrigo MJ, Marcos JF, Alférez F et al (2003) Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot 54(383):727–738

    PubMed  CAS  Google Scholar 

  • Rodrigo MJ, Alquezar B, Zacarías L (2006) Cloning and characterization of two 9-cis-epoxycarotene dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot 57(3):633–643

    PubMed  CAS  Google Scholar 

  • Ruan YL (1993) Fruit set, young fruit and leaf growth of Citrus unshiu in relation to assimilate supply. Sci Hortic 53:99–107

    Google Scholar 

  • Ruiz R, Guardiola JL (1994) Carbohydrate and mineral nutrition of orange fruitlets in relation to growth and abscission. Physiol Plant 90:27–36

    CAS  Google Scholar 

  • Sala JM, Cuñat P, Collado M et al (1992) Effect on nitrogenous fertilization (quantity and nitrogen form) in precocity of colour change of ‘Navelina’ oranges. Proc Int Soc Citricult II:598–602

    Google Scholar 

  • Sanz A, Monerri C, González-Ferrer J et al (1987) Changes in carbohydrates and mineral elements in Citrus leaves during flowering and fruit set. Physiol Plant 69:93–98

    CAS  Google Scholar 

  • Schaffer AA, Goldschmidt EE, Goren R et al (1985) Fruit set and ­carbohydrate status in alternate and non-alternate bearing Citrus cultivars. J Am Soc Hortic Sci 110:574–578

    CAS  Google Scholar 

  • Shuang H, Li-Song Ch, Huan-Xin J et al (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341

    Google Scholar 

  • Shuang H, Tang N, Jiang HX et al (2009) CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176:143–153

    Google Scholar 

  • Sonnen HD, Lenz F, Gross J (1979) Influence of root temperature on carotenoid development in the peel of Citrus unshiu and Citrus madurensis. Gartenbauwissenschaft 44:49–52

    CAS  Google Scholar 

  • Southwick SM, Davenport T (1987) Modification of the water stress induced floral response in ‘Tahiti’ lime. J Am Soc Hortic Sci 112(2):231–236

    CAS  Google Scholar 

  • Spiegel-Roy P, Goldschmidt EE (1996) Biology of Citrus. Cambridge University Press, Cambridge

    Google Scholar 

  • Srivastava LM (2002) Plant growth and development. Hormones and environment. Academic, London

    Google Scholar 

  • Srivastava AK, Singh S, Huchche AD (2000) An analysis of citrus flowering – a review. Agr Rev 21(1):1–15

    Google Scholar 

  • Stearns CR, Young GT (1942) The relation of climatic conditions to color development in citrus fruit. Proc Fla State Hortic Soc 56:39–61

    Google Scholar 

  • Syvertsen JP, Goñi C, Otero A (2003) Fruit load and canopy shading affect leaf characteristics and net gas exchange of ‘Spring’ navel orange trees. Tree Physiol 23:899–906

    PubMed  CAS  Google Scholar 

  • Talón M, Zacarías L, Primo-Millo E (1990) Hormonal changes associated with fruit set and development in mandarins differing in their parthenocarpic ability. Physiol Plant 79:400–406

    Google Scholar 

  • Talón M, Mehouachi J, Iglesias DJ et al (2000) Citrus fruitlet abscission: physiological bases supporting the “competition hypothesis”. Proc Int Soc Citricult I:602–604

    Google Scholar 

  • Tamim M, Altman A, Goren R et al (1996) Modification of the time and intensity of flowers in Citrus cultivars by water stress, light, low temperatures and growth regulators. Proc Int Soc Citricult II:945–948

    Google Scholar 

  • Trebitsh T, Goldschmidt EE, Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc Nat Acad Sci USA 90:9441–9445

    PubMed  CAS  Google Scholar 

  • Tzur A, Goren R (1977) Reducing preharvest drop in ‘Temple’ orange fruits by 2,4-D. Role of cellulase in the calyx abscission zone. Sci Hortic 7:237–248

    Google Scholar 

  • Urban L, Léchaudel M, Lu P (2004) Effect of fruit load and girdling on leaf photosynthesis in Mangifera indica L. J Exp Bot 55:2075–2085

    PubMed  CAS  Google Scholar 

  • Valero D, Martínez-Romero D, Serrano M et al (1998) Influence of postharvest treatment with putrescine and calcium on endogenous polyamines, firmness and abscissic acid in lemon (Citrus limon L. Burm Cv. Verna). J Agr Food Chem 46:2102–2109

    CAS  Google Scholar 

  • Valiente J, Albrigo G (2004) Flower bud induction of sweet orange trees Citrus sinensis (L.) Osbeck: effect of low temperatures, crop load, and bud age. J Am Soc Hortic Sci 129(2):158–164

    Google Scholar 

  • Van Staden J, Cook E, Nooden LD (1988) Citokinins and senescense. In: Senescence and aging in plants. Academic, San Diego

    Google Scholar 

  • Verreynne JS, Lovatt CJ (2009) The effect of crop load on budbreak influences return bloom in alternate bearing ‘Pixie’ mandarin. J Am Soc Hortic Sci 134:299–307

    Google Scholar 

  • Vidal AM, Ben-Cheikh W, Talon M et al (2003) Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid. Planta 217:442–448

    PubMed  CAS  Google Scholar 

  • Wallace A (1953) Nitrogen absorption and translocation by citrus cuttings at different root temperatures. Am Soc Hortic Sci 61:89–94

    CAS  Google Scholar 

  • Win TO, Srilaong V, Kyu KL et al (2006) Biochemical and physiological changes during chlorophyll degradation in lime (Citrus ­aurantifolia Swingle cv. ‘Paan’). J Hortic Sci Biotechnol 81(3):471–477

    Google Scholar 

  • Wünsche JN, Palmer JW, Greer DH (2000) Effect of crop load on fruiting and gas-exchange characteristics of ‘Braeburn’/M.26 apple trees at full canopy. J Am Soc Hortic Sci 125:93–99

    Google Scholar 

  • Young LB, Erickson LC (1961) Influence of temperature on colour change in Valencia oranges. Proc Am Soc Hortic Sci 78:197–200

    CAS  Google Scholar 

  • Yuan L, Xu DQ (2001) Stimulation effect of gibberellic acid short term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean. Photosynth Res 68:39–47

    PubMed  CAS  Google Scholar 

  • Zacarías L, Talón M, Ben-Cheikh W et al (1995) Abscisic acid increases in non-growing and paclobutrazol-treated fruits of seedless mandarins. Physiol Plant 95:613–619

    Google Scholar 

  • Zaragoza S, Almela V, Tadeo R et al (1996) Effectiveness of calcium nitrate and GA3 on the control of peel-pitting of ‘Fortune’ mandarin. J Hortic Sci 71(2):321–326

    CAS  Google Scholar 

  • Zucconi F, Monselise SP, Goren R (1978) Growth abscission relationships in developing orange fruit. Sci Hortic 9:137–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Gravina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gravina, A., Gambetta, G., Rivas, F. (2012). Nutrient-Hormone Interactions in Citrus: Physiological Implications. In: Srivastava, A. (eds) Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_21

Download citation

Publish with us

Policies and ethics